Kakatiya University, Warangal Syllabus for the Bachelor of Pharmacy (B. Pharm) Four Years Course From the academic year 2017-2018 onwards ## CHAPTER- I: REGULATIONS ## 1. Short Title and Commencement These regulations shall be called as "The Revised Regulations for the B. Pharm. Degree Program (CBCS) of the Pharmacy Council of India, New Delhi". They shall come into effect from the Academic Year 2017-18. The regulations framed are subject to modifications from time to time by Pharmacy Council of India. # 2. Minimum qualification for admission # First year B. Pharm: Candidate shall have passed 10+2 examination conducted by the respective state/central government authorities recognized as equivalent to 10+2 examination by the Association of Indian Universities (AIU) with English as one of the subjects and Physics, Chemistry, Mathematics (P.C.M) and or Biology (P.C.B / P.C.M.B.) as optional subjects individually. Any other qualification approved by the Pharmacy Council of India as equivalent to any of the above examinations. # 2.2. B. Pharm lateral entry (to third semester): A pass in D. Pharm. course from an institution approved by the Pharmacy Council of India under section 12 of the Pharmacy Act. # 3. Duration of the program The course of study for B.Pharm shall extend over a period of eight semesters (four academic years) and six semesters (three academic years) for lateral entry students. The curricula and syllabi for the program shall be prescribed from time to time by Pharmacy Council of India, New Delhi. ## 4. Medium of instruction and examinations Medium of instruction and examination shall be in English. # 5. Working days in each semester Each semestershall consist of not less than 100 working days. The odd semesters shall be conducted from the month of June/July to November/December and the even semesters shall be conducted from December/January to May/June in every calendar year. ## 6. Attendance and progress A candidate is required to put in at least 80% attendance in individual courses considering theory and practical separately. The candidate shall complete the prescribed course satisfactorily to be eligible to appear for the respective examinations. # 7. Program/Course credit structure As per the philosophy of Credit Based Semester System, certain quantum of academic work viz. theory classes, tutorial hours, practical classes, etc. are measured in terms of credits. On satisfactory completion of the courses, a candidate earns credits. The amount of credit associated with a course is dependent upon the number of hours of instruction per week in that course. Similarly, the credit associated with any of the other academic, co/extra-curricular activities is dependent upon the quantum of work expected to be put in for each of these activities per week. # Credit assignment # Theory and Laboratory courses Courses are broadly classified as Theory and Practical. Theory courses consist of lecture (L) and /or tutorial (T) hours, and Practical (P) courses consist of hours spent in the laboratory. Credits (C) for a course is dependent on the number of hours of instruction per week in that course, and is obtained by using a multiplier of one (1) for lecture and tutorial hours, and a multiplier of half (1/2) for practical (laboratory) hours. Thus, for example, a theory course having three lectures and one tutorial per week throughout the semester carries a credit of 4. Similarly, a practical having four laboratory hours per week throughout semester carries a credit of 2. ## Minimum credit requirements The minimum credit points required for award of a B. Pharm. degree is 208. These credits are divided into Theory courses, Tutorials, Practical, Practice School and Projectover the duration of eight semesters. The credits are distributed semester-wise as shown in Table IX. Courses generally progress in sequences, building competencies and their positioning indicates certain academic maturity on the part of the learners. Learners are expected to follow the semester-wise schedule of courses given in the syllabus. The lateral entry students shall get 52 credit points transferred from their D. Pharm program. Such students shall take up additional remedial courses of 'Communication Skills' (Theory and Practical) and 'Computer Applications in Pharmacy' (Theory and Practical) equivalent to 3 and 4 credit points respectively, a total of 7 credit points to attain 59 credit points, the maximum of I and II semesters. ## 8. Academic work A regular record of attendance both in Theory and Practical shall be maintained by the teaching staff of respective courses. Principal Vaagdevi College of Pharmacy Hanamkonda, Warandal-506-06 # 9. Course of study The course of study for B. Pharm shall include Semester Wise Theory & Practical as given in Table – I to VIII. The number of hours to be devoted to each theory, tutorial and practical course in any semester shall not be less than that shown in Table – I to VIII. Table-I: Course of study for semester I | | Table-1: Course of study for s | No. of | Tuto | Credit | |----------------------|---|--------------------------------------|------------------|--------------------------------------| | Course code | Name of the course | hours | rial | points | | BP101T | Human Anatomy and Physiology I—
Theory | 3 | 1 | 4 | | BP102T | Pharmaceutical Analysis I - Theory | 3 | | 4 | | BP103T | Pharmaceutics I – Theory | 3 | 11 | 4 | | BP104T | Pharmaceutical Inorganic Chemistry –
Theory | 3 | 10 | 4 | | BP105T | Communication skills - Theory * | 2 | e | 2 | | BP106RBT
BP106RMT | Remedial Biology/
Remedial Mathematics – Theory* | 2 | := | 2 | | BP107P | Human Anatomy and Physiology –
Practical | 4 | S#1 | 2 | | BP108P | Pharmaceutical Analysis I - Practical | 4 | S e . | 2 | | BP109P | Pharmaceutics I - Practical | 4 | (- | 2 | | BP110P | Pharmaceutical Inorganic Chemistry –
Practical | 4 | re | 2 | | BP111P | Communication skills - Practical* | 2 | <u> </u> | 1 | | BP112RBP | Remedial Biology - Practical* | 2 | - | | | | Total | 32/34 ^{\$} /36 [#] | 4 | 27/29 ^{\$} /30 [#] | ^{*}Applicable ONLY for the students who have studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology (RB)course. ^{\$}Applicable ONLY for the students who have studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics (RM)course. ^{*} Non University Examination (NUE) Table-II: Course of study for semester II | Course
Code | Name of the course | No. of
hours | Tutorial | Credit
points | |----------------|--|-----------------|----------|------------------| | BP201T | Human Anatomy and Physiology II - Theory | 3 | 1 | 4 | | BP202T | Pharmaceutical Organic Chemistry I - Theory | 3 | I | 4 | | BP203T | Biochemistry - Theory | 3 | 1 | 4 | | BP204T | Pathophysiology - Theory | 3 | 1 | 4 | | BP205T | Computer Applications in Pharmacy - Theory * | 3 | - | 3 | | BP206T | Environmental sciences - Theory * | 3 | • | 3 | | BP207P | Human Anatomy and Physiology II -Practical | 4 | 2 | 2 | | BP208P | Pharmaceutical Organic Chemistry I— Practical | 4 | 12 | 2 | | BP209P | Biochemistry - Practical | 4 | 1= | 2 | | BP210P | Computer Applications in Pharmacy - Practical* | 2 | - | 1 | | | Total | 32 | 4 | 29 | ^{*}Non University Examination (NUE) Table-III: Course of study for semester III | Course code | Name of the course | No. of
hours | Tutorial | Credit points | |-------------|---|-----------------|----------|---------------| | BP301T | Pharmaceutical Organic Chemistry II - Theory | 3 | 1 | 4 | | BP302T | Physical Pharmaceutics I – Theory | 3 | | 4 | | BP303T | Pharmaceutical Microbiology - Theory | 3 | | 4 | | BP304T | Pharmaceutical Engineering - Theory | 3 | 1 | 4 | | BP305P | Pharmaceutical Organic Chemistry II - Practical | 4 | · · | 2 | | BP306P | Physical Pharmaceutics I - Practical | 4 | 1/2 | 2 | | BP307P | Pharmaceutical Microbiology – Practical | 4 | 12 | 2 | | BP 308P | Pharmaceutical Engineering -Practical | 4 | 84 | 2 | | | Total | 28 | 4 | 24 | Table-IV: Course of study for semester IV | Course code | Name of the course | No. of
hours | Tutorial | Credit points | |-------------|--|-----------------|----------|---------------| | BP401T | Pharmaceutical Organic Chemistry III- Theory | 3 | 1 | 4 | | BP402T | Medicinal Chemistry I – Theory | 3 | 1 | 4 | | BP403T | Physical Pharmaceutics II - Theory | 3 | I | 4 | | BP404T | Pharmacology I – Theory | 3 | l l | 4 | | BP405T | Pharmacognosy and Phytochemistry I- Theory | 3 | 1 | 4 | | BP406P | Medicinal Chemistry I – Practical | 4 | - 3 | 2 | | BP407P | Physical Pharmaceutics II - Practical | 4 | | 2 | | BP408P | Pharmacology 1 - Practical | 4 | | 2 | | BP409P | Pharmacognosy and Phytochemistry I – Practical | 4 | nai | 2 | | | Total | 31 | 5 | 28 | Table-V: Course of study for semester V | Course code | Name of the course | No. of
hours | Tutorial | Credit points | |-------------|---|-----------------|----------|---------------| | BP501T | Medicinal Chemistry II – Theory | 3 | ı | 4 | | BP502T | Industrial Pharmacyl – Theory | 3 | 1 | 4 | | BP503T | Pharmacology II - Theory | 3 | -1 | 4 | | BP504T | Pharmacognosy and Phytochemistry II- Theory | 3 | 1 | 4 | | BP505T | Pharmaceutical Jurisprudence - Theory | 3 | 1 | 4 | | BP506P | Industrial Pharmacyl – Practical | 4 | * | 2 | | BP507P | Pharmacology II - Practical | 4 | 14 | 2 | | BP508P | Pharmacognosy and Phytochemistry II - | 4 | <u>æ</u> | 2 | | | Practical | | | | | | Total | 27 | 5 | 26 | Table-VI: Course of study for semester VI | Course code | Name of the course | No. of
hours | Tutorial | Credit
points | |-------------|---
-----------------|----------|------------------| | BP601T | Medicinal Chemistry III - Theory | 3 | l | 4 | | BP602T | Pharmacology III - Theory | 3 | 1 | 4 | | BP603T | Herbal Drug Technology - Theory | 3 | 1 | 4 | | BP604T | Biopharmaceutics and Pharmacokinetics –
Theory | 3 | 1 | 4 | | BP605T | Pharmaceutical Biotechnology - Theory | 3 | 1 | 4 | | BP606T | Quality Assurance –Theory | 3 | ì | 4 | | BP607P | Medicinal chemistry III - Practical | 4 | - | 2 | | BP608P | Pharmacology III - Practical | 4 | - | 2 | | BP609P | Herbal Drug Technology - Practical | 4 | - | 2 | | | Total | 30 | 6 | 30 | Table-VII: Course of study for semester VII | Course code | Name of the course | No. of
hours | Tutorial | Credit points | |-------------|--|-----------------|----------|---------------| | BP701T | Instrumental Methods of Analysis - Theory | 3 | 1 | 4 | | BP702T | Industrial PharmacyII Theory | 3 | 1 | 4 | | BP703T | Pharmacy Practice - Theory | 3 | 1 | 4 | | BP704T | Novel Drug Delivery System - Theory | 3 | 1 | 4 | | BP705P | Instrumental Methods of Analysis - Practical | 4 | - | 2 | | BP706PS | Practice School* | 12 | - | 6 | | | Total | 28 | 5 | 24 | ^{*} Non University Examination (NUE) 2 } Table-VIII: Course of study for semester VIII | Course code | Name of the course | No. of hours | Tutorial | Credit points | |-------------|--|--------------|----------|---------------| | BP801T | Biostatistics and Research Methodology | 3 | 1 | 4 | | BP802T | Social and Preventive Pharmacy | 3 | l l | 4 | | BP803ET | Elective – 1 | | | | | 1 | Pharmaceutical Marketing | | | | | 11 | Pharmaceutical Regulatory Science | | | | | 111 | Pharmacovigilance | | | ĺ | | IV | Quality Control and Standardizations of
Herbals | 3 | 31 | 4 | | V | Computer Aided Drug Design | | | | | BP804ET | Elective – 2 | | | | | ī | Cell and Molecular Biology | | | | | IJ | Cosmetic Science | 3 | 1 | 4 | | 111 | Experimental Pharmacology | | | | | IV | Advanced Instrumentation Techniques | | | | | V | Dietary Supplements and Nutraceuticals | | | | | BP805PW | Project Work | 12 | :=: | 6 | | | Total | 24 | 4 | 22 | Table-IX: Semester wise credits distribution | Semester | Credit Points | |---|--| | I | 27/29 ^{\$} /30 [#] | | II | 29 | | III | 24 | | IV | 28 | | V | 26 | | VI | 30 | | VII | 24 | | VIII | 22 | | Extracurricular/ Co curricular activities | 01* | | Total credit points for the program | 211/213 ⁸ /214 [#] | ^{*} The credit points assigned for extracurricular and or co-curricular activities shall be given by the Principals of the colleges and the same shall be submitted to the University. The criteria to acquire this credit point shall be defined by the university from time to time. ^{\$}Applicable ONLY for the students studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics course. [#]Applicable ONLY for the students studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology course. # 10. Program Committee - 1. The B. Pharm. program shall have a Program Committee constituted by the Head of the institution in consultation with all the Heads of the departments. - 2. The composition of the Program Committee shall be as follows: A senior teacher shall be the Chairperson; One Teacher from each department handling B.Pharm courses; and four student representatives of the program (one from each academic year), nominated by the Head of the institution. - 3. Duties of the Program Committee: - i. Periodically reviewing the progress of the classes. - Discussing the problems concerning curriculum, syllabus and the conduct of classes. - iii. Discussing with the course teachers on the nature and scope of assessment for the course and the same shall be announced to the students at the beginning of respective semesters. - iv. Communicating its recommendation to the Head of the institution on academic matters. - v. The Program Committee shall meet at least thrice in a semester preferably at the end of each Sessionalexam (Internal Assessment) and before the end semester exam. ## 11. Examinations/Assessments The scheme for internal assessment and end semester examinations is given in Table – X. ### End semester examinations The End Semester Examinations for each theory and practical coursethrough semesters I to VIII shall beconducted by the university except for the subjects with asterix symbol (*) in table I and II for which examinations shall be conducted by the subject experts at college level and the marks/grades shall be submitted to the university. Principal Vaagdevi College of Pharmacv nts and end semester examinations semester wise | 등 | |------------| | assessm | | r internal | | <u>ē</u> | | Schemes 1 | | ä | | Tables-X | | | | | | | | | | | | | | | | | Internal Assessment | sessment | | End Semester Exams | er Exams | Total | |----------------------|---|--------------------------|---------------------|---|---------------|---------------------------------|-----------------------------------|--| | Course | Name of the course | Continuous | Sessional Exams | Sxams | F | 100 | 4 | Marke | | 3003 | | Mode | Marks | Duration | lotal | MACKS | Duration | | | BPIOIT | Human Anatomy and
Physiology I- Theory | 01 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 100 | | BP102T | Pharmaceutical Analysis 1 –
Theory | 10 | 15 | 1 Hr | 25 | . 75 | 3 Hrs | 100 | | BP103T | Pharmaceutics I - Theory | 01 | 15 | l Hr | 25 | 75 | 3 Hrs | 100 | | BP104T | Pharmaceutical Inorganic
Chemistry – Theory | 01 | 15 | l Hr | 25 | 75 | 3 Hrs | 100 | | BP105T | Communication skills –
Theory * | 5 | 10 | 1 Hr | 15 | 35 | 1.5 Hrs | 50 | | BP106RBT
BP106RMT | Remedial Biology/
Mathematics – Theory* | (C | 10 | l Hr | 15 | 35 | 1,5 Hrs | 50 | | BP107P | Human Anatomy and
Physiology – Practical | \$ | 01 | 4 Hrs | 15 | 35 | 4 Hrs | 50 | | BP108P | Pharmaceutical Analysis I – Practical | 5 | 10 | 4 Hrs | 15 | 35 | 4 Hrs | 50 | | BP109P | Pharmaceutics I - Practical | \$ | 10 | 4 Hrs | 15 | 35 | 4 Hrs | 50 | | BP110P | Pharmaceutical Inorganic
Chemistry – Practical | 5 | 10 | 4 Hrs | 15 | 35 | 4 Hrs | 50 | | BP111P | Communication skills –
Practical* | 5 | 5 | 2 Hrs | 10 | 15 | 2 Hrs | 25 | | BP112RBP | Remedial Biology –
Practical* | 5 | 5 | 2 Hrs | 01 | 15 | 2 Hrs | 25 | | | Total | ,08/ _{\$} 2//02 | 115/1258/130# | 23/24 ⁵ /26 [#]
H rs | 185/2005/210# | 490/525 ^{\$} /
540* | 31.5/33 ⁵ /
35# Hrs | 675/725 ⁵ /
750 [#] | Applicable ONLY for the students studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology (RB) course. ^{*} Non University Examination(NUE) ⁸Applicable ONLY for the students studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics (RM)course. # Semester II | e Continuous Marks Sessional Exams Duration Total Marks Duration Total Marks Duration siology 10 15 1 Hr 25 75 Fheory* 10 15 1 Hr 25 50 siology 5 10 4 Hrs 15 35 5 10 4 Hrs 15 35 5 5 2 Hrs 10 15 5 5 2 Hrs 10 15 5 5 2 Hrs 10 15 6 5 2 Hrs 10 15 7 20 Hrs 205 520 | | | | Internal Assessment | sessment | | End Seme | End Semester Exams | Total | |---|--------|--|------------|---------------------|----------|-------|----------|--------------------|-----------| | Mode Marks Duration 10al Parks <t< th=""><th>Course</th><th>Name of the course</th><th>Continuous</th><th>Session</th><th>al Exams</th><th>Total</th><th>Moules</th><th>Durantion</th><th>Marke</th></t<> | Course | Name of the course | Continuous | Session | al Exams | Total | Moules | Durantion | Marke | | siology 10 15 1 Hr 25 75 Theory* 10 15 1 Hr 25 50 siology 5 10 4 Hrs 15 35 5 10 4 Hrs 15 35 5 5 2 Hrs 16 15 7 5 10 4 Hrs 15 35 7 5 5 2 Hrs 16 15 7 5 5 2 Hrs 16 15 7 6 7 2 Hrs 10 15 8 5 2 Hrs 205 520 | anos | | Mode | Marks | Duration | 10121 | MATERS | Duranon | LATERI WO | | 10 15 1 Hr 25 75 1 Hr 10 15 1 Hr 25 75 1 Hr 25 75 1 Hr 25 75 1 Hr 25 75 1 Hr 25 50 1 Hr 25 50 20 1 Hr 25 50 20 1 Hr 25 20 1 Hr 25 20 1 Hr 25 20 1 Hr 25 35 20 1 Hr 25 35 20 1 Hr 25 20 1 Hr 20 20 20 20 20 20 20 2 | P201T | Human Anatomy and Physiology II Theory | 10 | 15 | l Hr | 25 | 75 | 3 Hrs | 001 | | 10 15 1 Hr 25 75 1 Hr 25 75 1 Hr 25 75 1 Hr 25 75 1 Hr 25 50 1 Hr 25 50 20 1 Hr 25 50 20 1 Hr 25 20 20 20 20 20 20
20 2 | P202T | Pharmaceutical Organic
Chemistry I – Theory | 10 | 15 | H. | 25 | 7.5 | 3 Hrs | 100 | | Theory* 10 15 1 Hr 25 75 Theory* 10 15 1 Hr 25 50 siology 5 10 4 Hrs 15 35 5 10 4 Hrs 15 35 Total 80 125 20 Hrs 205 520 | P203T | Biochemistry - Theory | 10 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 100 | | Theory* 10 15 1 Hr 25 50 50 siology 5 10 4 Hrs 15 35 35 50 50 50 50 50 50 50 50 50 50 50 50 50 | P204T | Pathophysiology - Theory | 10 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 100 | | Theory* 10 15 1 Hr 25 50 siology 5 10 4 Hrs 15 35 5 10 4 Hrs 15 35 5 10 4 Hrs 15 35 7 5 10 4 Hrs 15 35 7 5 5 2 Hrs 10 15 7 5 5 2 Hrs 10 15 7 6 125 20 Hrs 205 520 | P205T | Computer Applications in Pharmacy – Theory* | 01 | 15 | l Hr | 25 | 50 | 2 Hrs | 75 | | siology 5 10 4 Hrs 15 35 5 10 4 Hrs 15 35 5 10 4 Hrs 15 35 5 5 2 Hrs 10 15 Total 80 125 20 Hrs 205 520 | P206T | Environmental sciences - Theory* | 10 | 15 | 1 Hr | 25 | 50 | 2 Hrs | 75 | | 1 5 10 4 Hrs 15 35 15 35 in 5 10 4 Hrs 15 35 in 5 2 Hrs 10 15 15 15 15 15 15 15 15 15 15 15 15 15 | BP207P | Human Anatomy and Physiology
II -Practical | 5 | 10 | 4 Hrs | 15 | 35 | 4 Hrs | 50 | | 5 10 4 Hrs 15 35 5 5 2 Hrs 10 15 Total 80 125 20 Hrs 205 520 | 3P208P | Pharmaceutical Organic
Chemistry I- Practical | 5 | 10 | 4 Hrs | 15 | 35 | 4 Hrs | 50 | | 5 5 2 Hrs 10 15 Total 80 125 20 Hrs 205 520 | 3P209P | Biochemistry - Practical | 5 | 01 | 4 Hrs | 15 | 35 | 4 Hrs | 20 | | 80 125 20 Hrs 205 520 | 3P210P | Computer Applications in Pharmacy – Practical* | \$ | 5 | 2 Hrs | 10 | 15 | 2 Hrs | 25 | | | | Total | 08 | 125 | 20 Hrs | 205 | 520 | 30 Hrs | 725 | ^{*} The subject experts at college level shall conduct examinations Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 11 # Semester III | | | | Internal Assessment | sessment | | End Seme | End Semester Exams | Total | |--------|--|------------|---------------------|-----------------|-------|----------|--------------------|-------| | code | Name of the course | Continuous | Sessions | Sessional Exams | Total | Montro | Duriotion | Marke | | anna | | Mode | Marks | Duration | LOURI | IVEALES | Duration | Mains | | BP301T | Pharmaceutical Organic
Chemistry II – Theory | 10 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 100 | | BP302T | PhysicalPharmaceuticsI -Theory | 10 | 15 | l Hr | 25 | 75 | 3 Hrs | 100 | | BP303T | Pharmaceutical Microbiology – Theory | 01 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 001 | | BP304T | Pharmaceutical Engineering –
Theory | 01 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 100 | | BP305P | Pharmaceutical Organic
Chemistry II – Practical | 8 | 10 | 4 Hr | 15 | 35 | 4 Hrs | 20 | | BP306P | Physical Pharmaceutics I –
Practical | 5 | 10 | 4 Hr | 5 | 35 | 4 Hrs | 50 | | BP307P | Pharmaceutical Microbiology –
Practical | 5 | 10 | 4 Hr | 15 | 35 | 4 Hrs | . 50 | | BP308P | Pharmaceutical Engineering –
Practical | 5 | 10 | 4 Hr | 15 | 35 | 4 Hrs | 50 | | | Total | 09 | 100 | 20 | 160 | 440 | 28Hrs | 009 | # Semester IV | Comme | | | Internal Assessment | sessment | | End Seme | End Semester Exams | 10.401 | |--------|---|------------|---------------------|-----------------|-------|----------|--------------------|--------| | Course | Name of the course | Continuous | Sessiona | Sessional Exams | E C | Marsha | D | Morke | | anos | | Mode | Marks | Duration | 10131 | Marks | Duranon | MINITE | | BP401T | Pharmaceutical Organic
Chemistry III— Theory | 10 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 001 | | BP402T | BP402T Medicinal Chemistry I – Theory | 10 | 15 | l Hr | 25 | 75 | 3 Hrs | 100 | | BP403T | Physical Pharmaceutics II –
Theory | 10 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 100 | | BP404T | Pharmacology I ~ Theory | 10 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 100 | | BP405T | BP405T Pharmacognosy I - Theory | 10 | 15 | l Hr | 25 | 75 | 3 Hrs | 100 | | BP406P | Medicinal Chemistry I Practical | 5 | 10 | 4 Hr | 15 | 35 | 4 Hrs | 50 | | BP407P | Physical Pharmaceutics II –
Practical | 5 | 10 | 4 Hrs | 15 | 35 | 4 Hrs | 50 | | BP408P | BP408P Pharmacology I - Practical | 5 | 10 | 4 Hrs | 15 | 35 | 4 Hrs | 50 | | BP409P | Pharmacognosy I - Practical | 5 | 10 | 4 Hrs | 15 | 35 | 4 Hrs | 50 | | | Total | 70 | 115 | 21 Hrs | 185 | 515 | 31 Hrs | 700 | # Semester V | | | | Internal Assessment | sessment | | End Seme | End Semester Exams | Total | |--------|--|------------|---------------------|-----------------|-------|-----------|--------------------|------------| | Course | Name of the course | Continuous | Session | Sessional Exams | F | MA Confro | Dungtion | Marke | | eone | | Mode | Marks | Duration | TOTAL | MINIMINS | Duration | TATES INT. | | 2501T | BP501T Medicinal Chemistry II - Theory | 10 | 15 | l Hr | 25 | 75 | 3 Hrs | 100 | | 2502T | BP502T Industrial Pharmacyl- Theory | 10 | 15 | I Hr | 25 | 75 | 3 Hrs | 100 | | 2503T | BP503T Pharmacology II - Theory | 01 | 15 | l Hr | 25 | 7.5 | 3 Hrs | 100 | | 2504T | BP504T Pharmacognosy II - Theory | 10 | 15 | 1 H. | 25 | 75 | 3 Hrs | 100 | | BP505T | Pharmaceutical Jurisprudence
Theory | 10 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 100 | | 9506P | BP506P Industrial Pharmacyl- Practical | 5 | 10 | 4 Hr | 15 | 35 | 4 Hrs | 50 | | 2507P | BP507P Pharmacology II - Practical | 'n | 01 | 4 Hr | 15 | 35 | 4 Hrs | 95 | | P508P | BP508P Pharmacognosy II - Practical | 8 | 01 | 4 Hr | 15 | 35 | 4 Hrs | 99 | | | Total | 99 | 105 | 17 Hr | 170 | 480 | 27 Hrs | 029 | # Semester VI | Common | | | Internal Assessment | sessment | | End Seme | End Semester Exams | Total | |--------|--|------------|---------------------|-----------------|-------|----------|--------------------|-------| | code | Name of the course | Continuous | Session | Sessional Exams | Total | Manha | 4 | Morks | | 2002 | | Mode | Marks | Duration | 10121 | Marks | Duranon | Mains | | BP601T | BP601T Medicinal Chemistry III - Theory | 10 | 15 | - Hr | 25 | 75 | 3 Hrs | 100 | | BP602T | Pharmacology III Theory | 10 | 15 | - Hr | 25 | 75 | 3 Hrs | 100 | | BP603T | Herbal Drug Technology –
Theory | 10 | 15 | I Hr | 25 | 75 | 3 Hrs | 100 | | BP604T | Biopharmaceutics and Pharmacokinetics – Theory | 01 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 001 | | BP605T | Pharmaceutical Biotechnology-
Theory | 10 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 100 | | 3P606T | BP606T Quality Assurance-Theory | 10 | 15 | 1 Hi | 25 | 75 | 3 Hrs | 100 | | BP607P | Medicinal chemistry III –
Practical | Ŋ | 10 | 4 Hrs | 15 | 35 | 4 Hrs | 20 | | BP608P | Pharmacology III - Practical | S | 0 | 4 Hrs | 15 | 35 | 4 Hrs | 50 | | BP609P | Herbal Drug Technology –
Practical | 5 | 10 | 4 Hrs | 15 | 35 | 4 Hrs | 50 | | | Total | 75 | 120 | 18 Hrs | 195 | 555 | 30 Hrs | 750 | # Semester VII | Course | 17.0 | | Internal Assessment | sessment | | End S
Ex | End Semester
Exams | Total | |----------|--------------------------------------|------------|---------------------|-----------------|-------|-------------|-----------------------|-------| | code | Name of the course | Continuous | Session | Sessional Exams | E T | Marilia | | Marks | | | | Mode | Marks | Duration | 10tal | Marks | Duration | | | T10701 | Instrumental Methods of Analysis | 9 | - | 1 . | 36 | 36 | 2 11.2 | 001 | | 110/10 | - Theory . | 01 | CI | <u>-</u> | 7 | C | S III C | 100 | | BP702T | Industrial Pharmacy - Theory | 01 | 15 | l Hr | 25 | 75 | 3 Hrs | 100 | | BP703T | Pharmacy Practice - Theory | 10 | 15 | l Hr | 25 | 75 | 3 Hrs | 100 | | BP704T | Novel Drug Delivery System
Theory | 10 | 15 | l Hr | 25 | 75 | 3 Hrs | 100 | | BP705 P | Instrumental Methods of Analysis | v | 10 | 4 Hrc | 15 | 3.5 | 4 Hre | O. | | | - Practical | ח | 21 | c | CI | ì | 0
=
 - | 3 | | 8P706 PS | BP706 PS Practice School* | 25 | | | 25 | 125 | 5 Hrs | 150 | | | Total | 70 | 70 | 8Hrs | 140 | 460 | 21 Hrs | 009 | ^{*} The subject experts at college level shall conduct examinations # Semester VIII | Code Name of the course Continuous Sessional Exams Total Marks Duration <th< th=""><th>Connec</th><th></th><th></th><th>Internal Assessment</th><th>essment</th><th></th><th>End Seme</th><th>End Semester Exams</th><th>Total</th></th<> | Connec | | | Internal Assessment | essment | | End Seme | End Semester Exams | Total |
--|--|--|------------|---------------------|----------|-------|----------|--------------------|------------| | Mode Marks Duration Total Author | Scino | Name of the course | Continuous | Sessiona | I Exams | Total | Morke | Duration | Marks | | Biostatistics and Research 10 15 1 Hr 25 75 3 Hrs 1 Methodology – Theory 10 15 1 Hr 25 75 3 Hrs 1 Theory Pharmaceutical Marketing – Theory Pharmaceutical Regulatory Science – Theory Pharmaceutical Regulatory Science – Theory Pharmaceutical Marketing – Theory Pharmaceutical Regulatory Science – Theory Pharmaceutical Marketing – Theory Theor | enge | | Mode | Marks | Duration | Lotai | Mains | Duramon | | | Social and Preventive Pharmacy 10 15 1 Hr 25 3 Hrs 1 | BP801T | Biostatistics and Research Methodology – Theory | 10 | 15 | l Hr | 25 | 75 | 3 Hrs | 100 | | Elective - 1 | BP802T | Social and Preventive Pharmacy – Theory | 01 | 15 | 1 Hr | 25 | 75 | 3 Hrs | 001 | | Pharmaceutical Marketing | BD803E | Elective -1 | | | | | | | | | Theory | T COOL | - Pharmaceutical Marketing - | 01 | 15 | l Hr | 25 | 7.5 | 3 Hrs | <u>001</u> | | Pharmaceutical Regulatory Science - Theory Science - Theory Science - Theory Pharmacovigilance Theory Quality Control and Standardizations of Herbals - Theory Theory Computer Aided Drug Design - Theory Cell and Molecular Biology - Theory Cosmetic Science - Theory | | Theory | | | | | | | | | Science - Theory Pharmacovigilance Theory Quality Control and Standardizations of Herbals - Theory Computer Aided Drug Design - Theory Computer Aided Drug Design - Theory Coll and Molecular Biology - Theory Cosmetic Science - Theory Experimental Pharmacology - Theory Cosmetic Science Advanced Instrumentation Techniques - Theory Cosmetic Supplements and Nutraccuticals - Theory Dietary Supplements and Nutraccuticals - Theory Cosmetic Science C | 1.1 | Pharmaceutical Regulatory | | | | | | | | | Pharmacovigilance Theory Quality Control and Standardizations of Herbals Theory Computer Aided Drug Design Theory Coll and Molecular Biology Theory Experimental Pharmacology Theory Experimental Pharmacology Theory Cosmetic Science Theory Experimental Pharmacology Theory Theory Theory Theory Advanced Instrumentation Techniques Theory Dietary Supplements and Nutraceuticals Theory Dietary Supplements and Nutraceuticals Theory Techniques Theory Dietary Supplements and Nutraceuticals Theory Techniques | = | Science - Theory | | | | | | | | | Quality Control and Standardizations of Herbals – Theory Computer Aided Drug Design – Theory 10 15 11 Hr 25 75 3 Hrs Theory Cell and Molecular Biology – Theory 10 15 11 Hr 25 75 3 Hrs Theory Cosmetic Science – Theory Experimental Pharmacology – Theory Advanced Instrumentation 15 11 Hr 25 75 3 Hrs Theory Theory Advanced Instrumentation 150 4 Hrs Techniques – Theory 150 4 Hrs Nutraceuticals – Theory - - 150 4 Hrs W Project Work - - 150 4 Hrs | III | Pharmacovigilance Theory | ì | | | | | | | | Standardizations of Herbals | VI | Quality Control and | | | | | | | | | Theory Computer Aided Drug Design | | dizations of Herbals | | | | | | | n | | Computer Aided Drug Design | | Theory | | | | | | | | | Theory Theory Cell and Molecular Biology - 1 1 1 25 75 3 Hrs 1 1 1 1 1 1 1 1 1 | 17 | er Aided Drug Design | | | | | | | | | Elective - 2 | ۸ | Theory | | | | | | | | | Cell and Molecular Biology — 10 15 1 Hr 25 75 3 Hrs Theory Cosmetic Science — Theory Experimental Pharmacology — Theory Advanced Instrumentation 1 Theory 4 Hrs 4 Hrs 4 Hrs 1 50 4 Hrs 4 Hrs 4 Hrs 1 50 4 Hrs 4 Hrs 1 6 | BP804ET | Elective - 2 | | | | | | | | | Theory Cosmetic Science – Theory Experimental Pharmacology – Theory Advanced Instrumentation Instr | | Cell and Molecular Biology - | 01 | 15 | l Hr | 25 | 75 | 3 Hrs | 001 | | Cosmetic Science – Theory Experimental Pharmacology – Theory Advanced Instrumentation | <u>, </u> | Theory | | | | | | | | | Experimental Pharmacology – Theory Advanced Instrumentation < | II | Cosmetic Science - Theory | | | | | | | | | Advanced Instrumentation Advanced Instrumentation Techniques – Theory | 111 | Experimental Pharmacology – Theory | | | | | | | | | Techniques – Theory Dietary Supplements and Nutraceuticals - Theory - - 150 4 Hrs Project Work - - 160 44 Hrs | IV | Advanced Instrumentation | | | | | | | | | Dietary Supplements and Nutraceuticals - Theory - - 150 4 Hrs Project Work - - 160 4 Hrs Total 40 60 4 Hrs 100 450 16 Hrs | | Techniques - Theory | | | | | | | | | Project Work - - - 150 4 Hrs Total 40 60 4 Hrs 100 450 16 Hrs | > | Dietary Supplements and
Nutraceuticals - Theory | | | | | | | | | Total 40 60 4 Hrs 100 450 16 Hrs | BP805PW | Project Work | 1 | • | 2 | ı | 150 | 4 Hrs | 150 | | | | obstan. | | 09 | 4 Hrs | 100 | 450 | 16 Hrs | 550 | 17 # Internal assessment: Continuous mode The marks allocated for Continuous mode of Internal Assessment shall be awarded as per the scheme given below. Table-XI:Scheme for awarding internal assessment: Continuous mode | Theory | | | |---|----|--------------| | Criteria | | imum
irks | | Attendance (Refer Table – XII) | 4 | 2 | | Academic activities (Average of any 3 activities e.g. quiz, assignment, open book test, field work, group discussion and seminar) | 3 | 1.5 | | Student - Teacher interaction | 3 | 1.5 | | Total | 10 | 5 | | Practical | | | | Attendance (Refer Table – XII) | 2 | | | Based on Practical Records, Regular viva voce, etc. | 3 | | | Total | 5 | | Table- XII: Guidelines for the allotment of marks for attendance | Percentage of Attendance | Theory | Practical | |--------------------------|--------|-----------| | 95 – 100 | 4 | 2 | | 90 – 94 | 3 | 1.5 | | 85 – 89 | 2 | 1 | | 80 - 84 | 1 | 0.5 | | Less than 80 | 0 | 0 | ## Sessional Exams Two Sessional exams shall be conducted for each theory / practical course as per the schedule fixed by the college(s). The scheme of question paper for theory and practical Sessional examinations is given below. The average marks of two Sessional exams shall be computed for internal assessment as per the requirements given in tables -X. Sessional exam shall be conducted for 30 marks for theory and shall be computed for 15 marks. Similarly Sessional exam for practical shall be conducted for 40 marks and shall be computed for 10 marks. # Question paper pattern for theory Sessional examinations For subjects having University examination | I. Multiple Choice Questions (MCQs) | | = | $10 \times 1 = 10$ | |---------------------------------------|-------|---|--------------------| | OR | | | OR | | Objective Type Questions (5 x 2) | | = | $05 \times 2 = 10$ | | (Answer all the questions) | | | | | I. Long Answers (Answer 1 out of 2) | | = | $1 \times 10 = 10$ | | II. Short Answers (Answer 2 out of 3) | | = | $2 \times 5 = 10$ | | | | | | | | Total | = | 30 marks | Principal # For subjects having Non University Examination | I. Long Answers (Answer 1 out of 2) | = | $1 \times 10 = 10$ | |---------------------------------------|---|--------------------| | II. Short Answers (Answer 4 out of 6) | = | $4 \times 5 = 20$ | Total = 30 marks # Question paper pattern for practical sessional examinations | I. Synopsis | = | 10 | |-----------------|---|----| | II. Experiments | = | 25 | | III. Viva voce | = | 05 | | | | | Total = 40 marks # 12. Promotion and award of grades A student shall be declared PASSand eligible for getting gradein a course of B.Pharm.program if he/she secures at least 50% marks in that particular course including internal assessment. For example, to be declared as PASS and to get grade, the student has to secure a minimum of 50 marks for the total of 100 including continuous mode of assessment and end semester theory examination and has to secure a minimum of 25 marks for the total 50 including internal
assessment and end semester practical examination. ## 13. Carry forward of marks In case a studentfails to secure the minimum 50% in any Theory or Practical course as specified in 12,then he/she shall reappear for the end semester examination of that course. However his/her marks of the Internal Assessmentshallbe carried overand he/she shall be entitled for grade obtained by him/her on passing. ## 14. Improvement of internal assessment A studentshall have the opportunity to improvehis/her performance only oncein the Sessional exam component of the internal assessment. The re-conduct of the Sessional exam shall be completed before the commencement of next end semester theory examinations. ### 15. Re-examination of end semester examinations Reexamination ofend semester examinationshall be conducted as per the schedule given in table XIII. The exact dates of examinations shall be notified from time to time. Table-XIII: Tentative schedule of end semester examinations | Semester | For Regular Candidates | For Failed Candidates | |---------------------|------------------------|-----------------------| | I, III, V and VII | November / December | May / June | | II, IV, VI and VIII | May / June | November / December | # Question paper pattern for end semester theory examinations For 75 marks paper - I. Multiple Choice Questions(MCQs) OR Objective Type Questions (10 x 2) (Answer all the questions) $20 \times 1 = 20$ OR $10 \times 2 = 20$ - II. Long Answers (Answer 2 out of 3) = $2 \times 10 = 20$ III. Short Answers (Answer 7 out of 9) = $7 \times 5 = 35$ - Total = 75 marks For 50 marks paper - I. Long Answers (Answer 2 out of 3) $= 2 \times 10 = 20$ II. Short Answers (Answer 6 out of 8) $= 6 \times 5 = 30$ - Total = 50 marks For 35 marks paper - 1. Long Answers (Answer 1 out of 2) = $1 \times 10 = 10$ II. Short Answers (Answer 5 out of 7) = $5 \times 5 = 25$ - Total = 35 marks # Question paper pattern for end semester practical examinations - I. Synopsis = 5 II. Experiments = 25 III. Viva voce = 5 - Total = 35 marks 2 Vaagdevi College of Pharmacy Hanamkonda, Warangal-508 000 organich # ## 16. Academic Progression: No student shall be admitted to any examination unless he/she fulfills the norms given in 6. Academic progression rules are applicable as follows: A student shall be eligible to carry forward all the courses of I, II and III semesters till the IV semester examinations. However, he/she shall not be eligible to attend the courses of V semester until all the courses of I and II semesters are successfully completed. A student shall be eligible to carry forward all the courses of III, IV and V semesters till the VI semester examinations. However, he/she shall not be eligible to attend the courses of VII semester until all the courses of I, II, III and IV semesters are successfully completed. A student shall be eligible to carry forward all the courses of V, VI and VII semesters till the VIII semester examinations. However, he/she shall not be eligible to get the course completion certificate until all the courses of I, II, III, IV, V and VI semesters are successfully completed. A student shall be eligible to get his/her CGPA upon successful completion of the courses of I to VIII semesters within the stipulated time period as per the norms specified in 26. A lateral entry student shall be eligible to carry forward all the courses of III, IV and V semesters till the VI semester examinations. However, he/she shall not be eligible to attend the courses of VII semester until all the courses of III and IV semesters are successfully completed. A lateral entry student shall be eligible to carry forward all the courses of V, VI and VII semesters till the VIII semester examinations. However, he/she shall not be eligible to get the course completion certificate until all the courses of III, IV, V and VI semesters are successfully completed. A lateral entry student shall be eligible to get his/her CGPA upon successful completion of the courses of III to VIII semesters within the stipulated time period as per the norms specified in 26. Any student who hasgiven more than 4 chances for successful completion of I / III semester courses and more than 3 chances for successful completion of II / IV semester courses shall be permitted to attend V / VII semester classes ONLY during the subsequent academic year as the case may be. In simpler terms there shall NOT be any ODD BATCH for any semester. A Daniel Note: Grade ABshould be considered as failed and treated as one head for deciding academic progression. Such rules are also applicable for those students who fail to register for examination(s) of any course in any semester. # 17. Grading of performances # Letter grades and grade points allocations: Based on the performances, each student shall be awarded a final letter grade at the end of the semester for each course. The letter grades and their corresponding grade points are given in Table – XII. Table – XII: Letter grades and grade points equivalent to Percentage of marks and performances | Percentage of
Marks Obtained | Letter Grade | Grade Point | Performance | |---------------------------------|--------------|-------------|-------------| | 90.00 - 100 | 0 | 10 | Outstanding | | 80.00 - 89.99 | A | 9 | Excellent | | 70.00 - 79.99 | В | 8 | Good | | 60.00 - 69.99 | С | 7 | Fair | | 50.00 - 59.99 | D | 6 | Average | | Less than 50 | F | 0 | Fail | | Absent | AB | 0 | Fail | A learner who remains absent for any end semester examination shall be assigned a letter grade of ABand a corresponding grade point of zero. He/she should reappear for the said evaluation/examination in due course. ## 18. The Semester grade point average (SGPA) The performance of a student in a semester is indicated by a number called 'Semester Grade Point Average' (SGPA). The SGPA is the weighted average of the grade points obtained in all the courses by the student during the semester. For example, if a student takes five courses(Theory/Practical) in a semester with credits C1, C2, C3, C4 and C5 and the student's grade points in these courses are G1, G2, G3, G4 and G5, respectively, and then students' SGPA is equal to: $$SGPA = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4 + C_5G_5}{C_1 + C_2 + C_3 + C_4 + C_5}$$ The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and ABSgrade awarded in that semester. For example if a learner has a F or ABS grade in course 4, the SGPA shall then be computed as: Principal Vaagdevi College of Pharmacy $$C_1G_1 + C_2G_2 + C_3G_3 + C_4* ZERO + C_5G_5$$ $SGPA = C_1 + C_2 + C_3 + C_4 + C_5$ 19. Cumulative Grade Point Average (CGPA) The CGPA is calculated with the SGPA of all the VIII semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all VIII semesters and their courses. The CGPA shall reflect the failed statusin case of F grade(s),till the course(s) is/are passed. When the course(s)is/are passedby obtaining a pass grade on subsequent examination(s) the CGPA shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as: $$C_{1}S_{1} + C_{2}S_{2} + C_{3}S_{3} + C_{4}S_{4} + C_{5}S_{5} + C_{6}S_{6} + C_{7}S_{7} + C_{8}S_{8}$$ $$C_{1} + C_{2} + C_{3} + C_{4} + C_{5} + C_{6} + C_{7} + C_{8}$$ where C_1 , C_2 , C_3 , is the total number of credits for semester I,II,III,... and S_1 , S_2 , S_3 , is the SGPA of semester I,II,III,.... ## 20. Declaration of class The class shall be awarded on the basis of CGPA as follows: First Class with Distinction = CGPA of. 7.50 and above First Class = CGPA of 6.00 to 7.49 Second Class = $CGPA ext{ of } 5.00 ext{ to } 5.99$ ## 21. Project work All the students shall undertake a projectunder the supervision of a teacher and submit a report. The area of the project shall directly relate any one of the elective subject opted by the student in semester VIII. The project shall be carried out in group not exceeding 5 in number. The project report shall be submitted in triplicate (typed & bound copy not less than 25 pages). The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). Students shall be evaluated in groups for four hours (i.e., about half an hour for a group of five students). The projects shall be evaluated as per the criteria given below. # Evaluation of Dissertation Book: | Objective(s) of the work done | 15 Marks | |-------------------------------|----------| | Methodology adopted | 20 Marks | | Results and Discussions | 20 Marks | | Conclusions and Outcomes | 20 Marks | | | | | | Total | 75 Marks | |-----------------------------|-------|----------| | Evaluation of Presentation: | | | | Presentation of work | | 25 Marks | | Communication skills | | 20 Marks | | Question and answer skills | | 30 Marks | | | Total | 75 Marks | Explanation: The 75 marks assigned to the dissertation book shall be same for all the students in a group. However, the 75 marks assigned for presentation shall be awarded based on the performance of individual students in the given criteria. ## 22. Industrial training (Desirable) Every candidate shall be required to work for at least 150 hours spread over four weeks in a Pharmaceutical Industry/Hospital. It includes Production unit, Quality Control department, Quality Assurance department, Analytical laboratory, Chemical manufacturing unit, Pharmaceutical R&D, Hospital (Clinical Pharmacy), Clinical Research Organization, Community Pharmacy, etc. After the Semester – VI and before the commencement of Semester – VII, and shall submit satisfactory report of such work and certificate duly signed by the authority of training organization to the head of the institute. ## 23. Practice School In the VII semester, every candidate shall undergo practice school for a period of 150 hours evenly
distributed throughout the semester. The student shall opt any one of the domains for practice school declared by the program committee from time to time. At the end of the practice school, every student shall submit a printed report (in triplicate) on the practice school he/she attended (not more than 25 pages). Along with the exams of semester VII, the report submitted by the student, knowledge and skills acquired by the student through practice school shall be evaluated by the subject experts at college leveland grade point shall be awarded. ### 24. Award of Ranks Ranks and Medals shall be awarded on the basis of final CGPA. However, candidates who fail in one or more courses during the B.Pharm program shall not be eligible for award of ranks. Moreover, the candidates should have completed the B. Pharm program in minimum prescribed number of years, (four years) for the award of Ranks. # 25. Award of degree Candidates who fulfill the requirements mentioned above shall be eligible for award of degree during the ensuing convocation. # 26. Duration for completion of the program of study The duration for the completion of the program shall be fixed as double the actual duration of the program and the students have to pass within the said period, otherwise they have to get fresh Registration. ## 27. Re-admission after break of study Candidate who seeks re-admission to the program after break of study has to get the approval from the university by paying a condonation fee. No condonation is allowed for the candidate who has more than 2 years of break up period and he/she has to rejoin the program by paying the required fees. **CHAPTER - II: SYLLABUS** Semester I # BP101T. HUMAN ANATOMY AND PHYSIOLOGY-I (Theory) 45 Hours **Scope:** This subject is designed to impart fundamental knowledge on the structure and functions of the various systems of the human body. It also helps in understanding both homeostatic mechanisms. The subject provides the basic knowledge required to understand the various disciplines of pharmacy. Objectives: Upon completion of this course the student should be able to - 1. Explain the gross morphology, structure and functions of various organs of the human body. - 2. Describe the various homeostatic mechanisms and their imbalances. - 3. Identify the various tissues and organs of different systems of human body. - 4. Perform the various experiments related to special senses and nervous system. - 5. Appreciate coordinated working pattern of different organs of each system ### Course Content: Unit I 10 hours • Introduction to human body Definition and scope of anatomy and physiology, levels of structural organization and body systems, basic life processes, homeostasis, basic anatomical terminology. Cellular level of organization Structure and functions of cell, transport across cell membrane, cell division, cell junctions. General principles of cell communication, intracellular signaling pathway activation by extracellular signal molecule, Forms of intracellular signaling: a) Contact-dependent b) Paracrine c) Synaptic d) Endocrine Tissue level of organization Classification of tissues, structure, location and functions of epithelial, muscular and nervous and connective tissues. Unit II 10 hours • Integumentary system Structure and functions of skin Skeletal system Divisions of skeletal system, types of bone, salient features and functions of bones of axial and appendicular skeletal system Organization of skeletal muscle, physiology of muscle contraction, neuromuscular junction • Joints Structural and functional classification, types of joints movements and its articulation Unit III 10 hours Body fluids and blood Body fluids, composition and functions of blood, hemopoeisis, formation of hemoglobin, anemia, mechanisms of coagulation, blood grouping, Rh factors, transfusion, its significance and disorders of blood, Reticulo endothelial system. Lymphatic system Lymphatic organs and tissues, lymphatic vessels, lymph circulation and functions of lymphatic system Unit IV 08 hours Peripheral nervous system: Classification of peripheral nervous system: Structure and functions of sympathetic and parasympathetic nervous system. Origin and functions of spinal and cranial nerves. Special senses Structure and functions of eye, ear, nose and tongue and their disorders. Unit V 07 hours Cardiovascular system Heart – anatomy of heart, blood circulation, blood vessels, structure and functions of artery, vein and capillaries, elements of conduction system of heart and heart beat, its regulation by autonomic nervous system, cardiac output, cardiac cycle. Regulation of blood pressure, pulse, electrocardiogram and disorders of heart. Principal Vaagdevi College of Pharmany Hanamkonda, Warangal-500, 2005 ## BP107P. HUMAN ANATOMY AND PHYSIOLOGY (Practical) 4 Hours/week Practical physiology is complimentary to the theoretical discussions in physiology. Practicals allow the verification of physiological processes discussed in theory classes through experiments on living tissue, intact animals or normal human beings. This is helpful for developing an insight on the subject. - 1. Study of compound microscope. - 2. Microscopic study of epithelial and connective tissue - 3. Microscopic study of muscular and nervous tissue - 4. Identification of axial bones - 5. Identification of appendicular bones - 6. Introduction to hemocytometry. - 7. Enumeration of white blood cell (WBC) count - 8. Enumeration of total red blood corpuscles (RBC) count - 9. Determination of bleeding time - 10. Determination of clotting time - 11. Estimation of hemoglobin content - 12. Determination of blood group. - 13. Determination of erythrocyte sedimentation rate (ESR). - 14. Determination of heart rate and pulse rate. - 15. Recording of blood pressure. ## Recommended Books (Latest Editions) - 1. Essentials of Medical Physiology by K. Sembulingam and P. Sembulingam. Jaypee brothers medical publishers, New Delhi. - Anatomy and Physiology in Health and Illness by Kathleen J.W. Wilson, Churchill Livingstone, New York - 3. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co, Riverview, MI USA - 4. Text book of Medical Physiology- Arthur C, Guyton and John. E. Hall. Miamisburg, OH, U.S.A. - 5. Principles of Anatomy and Physiology by Tortora Grabowski. Palmetto, GA, U.S.A. Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 Salmach Salmac - 6. Textbook of Human Histology by Inderbir Singh, Jaypee brother's medical publishers, New Delhi. - 7. Textbook of Practical Physiology by C.L. Ghai, Jaypee brother's medical publishers, New Delhi. - 8. Practical workbook of Human Physiology by K. Srinageswari and Rajeev Sharma, Jaypee brother's medical publishers, New Delhi. # Reference Books (Latest Editions) - Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co, Riverview, MI USA - 2. Text book of Medical Physiology- Arthur C, Guyton and John. E. Hall. Miamisburg, OH, U.S.A. - 3. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterrje ,Academic Publishers Kolkata System 1 # BP102T. PHARMACEUTICAL ANALYSIS (Theory) 45 Hours **Scope**: This course deals with the fundamentals of analytical chemistry and principles of electrochemical analysis of drugs Objectives: Upon completion of the course student shall be able to - understand the principles of volumetric and electro chemical analysis - carryout various volumetric and electrochemical titrations - develop analytical skills ### **Course Content:** UNIT-I 10 Hours - (a) Pharmaceutical analysis- Definition and scope - i) Different techniques of analysis - ii) Methods of expressing concentration - iii) Primary and secondary standards. - iv) Preparation and standardization of various molar and normal solutions-Oxalic acid, sodium hydroxide, hydrochloric acid, sodium thiosulphate, sulphuric acid, potassium permanganate and ceric ammonium sulphate - (b) Errors: Sources of errors, types of errors, methods of minimizing errors, accuracy, precision and significant figures - (c) Pharmacopoeia, Sources of impurities in medicinal agents, limit tests. UNIT-II 10 Hours - Acid base titration: Theories of acid base indicators, classification of acid base titrations and theory involved in titrations of strong, weak, and very weak acids and bases, neutralization curves - Non aqueous titration: Solvents, acidimetry and alkalimetry titration and estimation of Sodium benzoate and Ephedrine HCl UNIT-III 10 Hours - Precipitation titrations: Mohr's method, Volhard's, Modified Volhard's, Fajans method, estimation of sodium chloride. - Complexometric titration: Classification, metal ion indicators, masking and demasking reagents, estimation of Magnesium sulphate, and calcium gluconate. - Gravimetry: Principle and steps involved in gravimetric analysis. Purity of the precipitate: co-precipitation and post precipitation, Estimation of barium sulphate. - Basic Principles, methods and application of diazotisation titration. **UNIT-IV** 08 Hours ### Redox titrations - (a) Concepts of oxidation and reduction - (b) Types of redox titrations (Principles and applications) Cerimetry, Iodimetry, Iodometry, Bromatometry, Dichrometry, Titration with potassium iodate UNIT-V 07 Hours - Electrochemical methods of analysis - Conductometry- Introduction, Conductivity cell, Conductometric titrations, applications. - Potentiometry Electrochemical cell, construction and working of reference (Standard hydrogen, silver chloride electrode and calomel electrode) and indicator electrodes (metal electrodes and glass electrode), methods to determine end point of potentiometric titration and applications. - Polarography Principle, Ilkovic equation, construction and working of dropping mercury electrode and rotating platinum electrode, applications Vaagdevi College of Pharmacy # BP108P, PHARMACEUTICAL ANALYSIS (Practical) 4 Hours / Week # I Limit Test of the following - (1) Chloride - (2) Sulphate - (3) Iron - (4)
Arsenic # H Preparation and standardization of - (1) Sodium hydroxide - (2) Sulphuric acid - (3) Sodium thiosulfate - (4) Potassium permanganate - (5) Ceric ammonium sulphate # III Assay of the following compounds along with Standardization of Titrant - (1) Ammonium chloride by acid base titration - (2) Ferrous sulphate by Cerimetry - (3) Copper sulphate by lodometry - (4) Calcium gluconate by complexometry - (5) Hydrogen peroxide by Permanganometry - (6) Sodium benzoate by non-aqueous titration - (7) Sodium Chloride by precipitation titration ## IV Determination of Normality by electro-analytical methods - (1) Conductometric titration of strong acid against strong base - (2) Conductometric titration of strong acid and weak acid against strong base - (3) Potentiometric titration of strong acid against strong base ## **Recommended Books: (Latest Editions)** - A.H. Beckett & J.B. Stenlake's, Practical Pharmaceutical Chemistry Vol I & II, Stahlone Press of University of London - 2. A.J. Vogel, Text Book of Quantitative Inorganic analysis - 3. P. Gundu Rao, Inorganic Pharmaceutical Chemistry - 4. Bentley and Driver's Textbook of Pharmaceutical Chemistry - 5. John H. Kennedy, Analytical chemistry principles - Indian Pharmacopoeia. # BP103T. PHARMACEUTICS- I (Theory) 45 Hours **Scope:** This course is designed to impart a fundamental knowledge on the preparatory pharmacy with arts and science of preparing the different conventional dosage forms. Objectives: Upon completion of this course the student should be able to: - Know the history of profession of pharmacy - Understand the basics of different dosage forms, pharmaceutical incompatibilities and pharmaceutical calculations - · Understand the professional way of handling the prescription - Preparation of various conventional dosage forms ## Course Content: UNIT - I 10 Hours - Historical background and development of profession of pharmacy: History of profession of Pharmacy in India in relation to pharmacy education, industry and organization, Pharmacy as a career, Pharmacopoeias: Introduction to IP, BP, USP and Extra Pharmacopoeia. - Dosage forms: Introduction to dosage forms, classification and definitions - **Prescription:** Definition, Parts of prescription, handling of Prescription and Errors in prescription. - Posology: Definition, Factors affecting posology. Pediatric dose calculations based on age, body weight and body surface area. UNIT - II 10 Hours - Pharmaceutical calculations: Weights and measures Imperial & Metric system, Calculations involving percentage solutions, alligation, proof spirit and isotonic solutions based on freezing point and molecular weight. - Powders: Definition, classification, advantages and disadvantages, Simple & compound powders official preparations, dusting powders, effervescent, efflorescent and hygroscopic powders, eutectic mixtures. Geometric dilutions. - Liquid dosage forms: Advantages and disadvantages of liquid dosage forms. Excipients used in formulation of liquid dosage forms. Solubility enhancement techniques UNIT – III 08 Hours Monophasic liquids: Definitions and preparations of Gargles, Mouthwashes, Throat Paint, Eardrops, Nasal drops, Enemas, Syrups, Elixirs, Liniments and Lotions. • Biphasic liquids: - Suspensions: Definition, advantages and disadvantages, classifications, Preparation of suspensions; Flocculated and Deflocculated suspension & stability problems and methods to overcome. - Emulsions: Definition, classification, emulsifying agent, test for the identification of type of Emulsion, Methods of preparation & stability problems and methods to overcome. UNIT – IV 08 Hours - Suppositories: Definition, types, advantages and disadvantages, types of bases, methods of preparations. Displacement value & its calculations, evaluation of suppositories. - Pharmaceutical incompatibilities: Definition, classification, physical, chemical and therapeutic incompatibilities with examples. UNIV – V 07 Hours Semisolid dosage forms: Definitions, classification, mechanisms and factors influencing dermal penetration of drugs. Preparation of ointments, pastes, creams and gels. Excipients used in semi solid dosage forms. Evaluation of semi solid dosages forms C.1 Principal Pho Vaagdevi College of Dh # BP109P. PHARMACEUTICSI (Practical) 3 Hours / week # 1. Syrups - a) Syrup IP'66 - b) Compound syrup of Ferrous Phosphate BPC'68 ### 2. Elixirs - a) Piperazine citrate elixir - b) Paracetamol pediatric elixir ## 3.Linctus - a) Terpin Hydrate Linctus IP'66 - b) Iodine Throat Paint (Mandles Paint) ### 4. Solutions - a) Strong solution of ammonium acetate - b) Cresol with soap solution - c) Lugol's solution # 5. Suspensions - a) Calamine lotion - b) Magnesium Hydroxide mixture - c) Aluminimum Hydroxide gel # 6. Emulsions a) Turpentine Liniment b) Liquid paraffin emulsion # 7. Powders and Granules - a) ORS powder (WHO) - b) Effervescent granules - c)Dusting powder - d)Divded powders # 8. Suppositories - a) Glycero gelatin suppository - b) Coca butter suppository - c) Zinc Oxide suppository #### 8. Semisolids - a) Sulphur ointment - b) Non staining-iodine ointment with methyl salicylate - c) Carbopal gel # 9. Gargles and Mouthwashes - a) Iodine gargle - b) Chlorhexidine mouthwash **Recommended Books: (Latest Editions)** College of Party Name Principal - 1. H.C. Ansel et al., Pharmaceutical Dosage Form and Drug Delivery System, Lippincott Williams and Walkins, New Delhi. - 2. Carter S.J., Cooper and Gunn's-Dispensing for Pharmaceutical Students, CBS publishers, New Delhi. - 3. M.E. Aulton, Pharmaceutics, The Science & Dosage Form Design, Churchill Livingstone, Edinburgh. - 4. Indian pharmacopoeia. - 5. British pharmacopoeia. - 6. Lachmann. Theory and Practice of Industrial Pharmacy, Lea& Febiger Publisher, The University of Michigan. - 7. Alfonso R. Gennaro Remington. The Science and Practice of Pharmacy, Lippincott Williams, New Delhi. - 8. Carter S.J., Cooper and Gunn's. Tutorial Pharmacy, CBS Publications, New Delhi. - 9. E.A. Rawlins, Bentley's Text Book of Pharmaceutics, English Language Book Society, Elsevier Health Sciences, USA. - 10. Isaac Ghebre Sellassie: Pharmaceutical Pelletization Technology, Marcel Dekker, INC, New York. - 11. Dilip M. Parikh: Handbook of Pharmaceutical Granulation Technology, Marcel Dekker, INC, New York. - 12. Françoise Nieloud and Gilberte Marti-Mestres: Pharmaceutical Emulsions and Suspensions, Marcel Dekker, INC, New York. Principal Vaagdevi College of Pharmacy # BP104T. PHARMACEUTICAL INORGANIC CHEMISTRY (Theory) 45 Hours Scope: This subject deals with the monographs of inorganic drugs and pharmaceuticals. Objectives: Upon completion of course student shall be able to - know the sources of impurities and methods to determine the impurities in inorganic drugs and pharmaceuticals - understand the medicinal and pharmaceutical importance of inorganic compounds ### Course Content UNIT I 10 Hours • Impurities in pharmaceutical substances: History of Pharmacopoeia, Sources and types of impurities, principle involved in the limit test for Chloride, Sulphate, Iron, Arsenic, Lead and Heavy metals, modified limit test for Chloride and Sulphate General methods of preparation, assay for the compounds superscripted with asterisk (*), properties and medicinal uses of inorganic compounds belonging to the following classes UNIT II 10 Hours - Acids, Bases and Buffers: Buffer equations and buffer capacity in general, buffers in pharmaceutical systems, preparation, stability, buffered isotonic solutions, measurements of tonicity, calculations and methods of adjusting isotonicity. - Major extra and intracellular electrolytes: Functions of major physiological ions, Electrolytes used in the replacement therapy: Sodium chloride*, Potassium chloride, Calcium gluconate* and Oral Rehydration Salt (ORS), Physiological acid base balance. - Dental products: Dentifrices, role of fluoride in the treatment of dental caries, Desensitizing agents, Calcium carbonate, Sodium fluoride, and Zinc eugenol cement. **UNIT III** 10 Hours Gastrointestinal agents Acidifiers: Ammonium chloride* and Dil. HCl Antacid: Ideal properties of antacids, combinations of antacids, Sodium Q Principal Vaagdevi College of Pharmacy Bicarbonate*, Aluminum hydroxide gel, Magnesium hydroxide mixture Cathartics: Magnesium sulphate, Sodium orthophosphate, Kaolin and Bentonite Antimicrobials: Mechanism, classification, Potassium permanganate, Boric acid, Hydrogen peroxide*, Chlorinated lime*, Iodine and its preparations ### **UNIT IV** 08 Hours • Miscellaneous compounds Expectorants: Potassium iodide, Ammonium chloride*. Emetics: Copper sulphate*, Sodium potassium tartarate Haematinics: Ferrous sulphate*, Ferrous gluconate Poison and Antidote: Sodium thiosulphate*, Activated charcoal, Sodium nitrite333 Astringents: Zinc Sulphate, Potash Alum **UNIT V** 07 Hours • Radiopharmaceuticals: Radio activity, Measurement of radioactivity, Properties of α, β, γ radiations, Half life, radio isotopes and study of radio isotopes - Sodium iodide I¹³¹, Storage conditions, precautions & pharmaceutical application of radioactive substances. # BP110P. PHARMACEUTICAL INORGANIC CHEMISTRY (Practical) 4 Hours / Week # I Limit tests for following ions Limit test for Chlorides and Sulphates Modified limit test for Chlorides and Sulphates Limit test for Iron Limit test for Heavy metals Limit test for Lead Limit test for Arsenic ### II Identification test Magnesium hydroxide Ferrous sulphate Sodium bicarbonate Calcium gluconate Copper sulphate ## III Test for purity Swelling power of Bentonite Neutralizing capacity of aluminum hydroxide gel Determination of potassium iodate and iodine in potassium lodide # [V Preparation of inorganic pharmaceuticals Boric acid Potash alum Ferrous sulphate # **Recommended Books (Latest Editions)** - A.H. Beckett & J.B. Stenlake's, Practical Pharmaceutical Chemistry Vol I & II, Stahlone Press of University of London, 4th edition. - 2. A.I. Vogel, Text Book of
Quantitative Inorganic analysis - 3. P. Gundu Rao, Inorganic Pharmaceutical Chemistry, 3rd Edition - 4. M.L Schroff, Inorganic Pharmaceutical Chemistry - 5. Bentley and Driver's Textbook of Pharmaceutical Chemistry - 6. Anand & Chatwal, Inorganic Pharmaceutical Chemistry - 7. Indian Pharmacopoeia # **BP105T.COMMUNICATION SKILLS (Theory)** 30 Hours **Scope:** This course will prepare the young pharmacy student to interact effectively with doctors, nurses, dentists, physiotherapists and other health workers. At the end of this course the student will get the soft skills set to work cohesively with the team as a team player and will add value to the pharmaceutical business. # **Objectives:** Upon completion of the course the student shall be able to - 1. Understand the behavioral needs for a Pharmacist to function effectively in the areas of pharmaceutical operation - 2. Communicate effectively (Verbal and Non Verbal) - 3. Effectively manage the team as a team player - 4. Develop interview skills - 5. Develop Leadership qualities and essentials #### Course content: UNIT – I 07 Hours - Communication Skills: Introduction, Definition, The Importance of Communication, The Communication Process - Source, Message, Encoding, Channel, Decoding, Receiver, Feedback, Context - Barriers to communication: Physiological Barriers, Physical Barriers, Cultural Barriers, Language Barriers, Gender Barriers, Interpersonal Barriers, Psychological Barriers, Emotional barriers - Perspectives in Communication: Introduction, Visual Perception, Language, Other factors affecting our perspective Past Experiences, Prejudices, Feelings, Environment UNIT – II 07 Hours - Elements of Communication: Introduction, Face to Face Communication Tone of Voice, Body Language (Non-verbal communication), Verbal Communication, Physical Communication - Communication Styles: Introduction, The Communication Styles Matrix with example for each -Direct Communication Style, Spirited Communication Style, Systematic Communication Style, Considerate Communication Style UNIT – III 07 Hours Basic Listening Skills: Introduction, Self-Awareness, Active Listening, Becoming an Active Listener, Listening in Difficult Situations - Effective Written Communication: Introduction, When and When Not to Use Written Communication Complexity of the Topic, Amount of Discussion' Required, Shades of Meaning, Formal Communication - Writing Effectively: Subject Lines, Put the Main Point First, Know Your Audience, Organization of the Message UNIT-IV 05 Hours - Interview Skills: Purpose of an interview, Do's and Dont's of an interview - Giving Presentations: Dealing with Fears, Planning your Presentation, Structuring Your Presentation, Delivering Your Presentation, Techniques of Delivery UNIT - V 04 Hours • Group Discussion: Introduction, Communication skills in group discussion, Do's and Dont's of group discussion Salari Han Principal # **BP111P.COMMUNICATION SKILLS (Practical)** 2 Hours / week Thefollowing learning modules are to be conducted using wordsworth[®] English language lab software # Basic communication covering the following topics Meeting People **Asking Questions** Making Friends What did you do? Do's and Dont's # Pronunciations covering the following topics Pronunciation (Consonant Sounds) Pronunciation and Nouns Pronunciation (Vowel Sounds) # **Advanced Learning** Listening Comprehension / Direct and Indirect Speech Figures of Speech **Effective Communication** Writing Skills **Effective Writing** Interview Handling Skills E-Mail etiquette Presentation Skills Principal Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 ## Recommended Books: (Latest Edition) - Basic communication skills for Technology, Andreja. J. Ruther Ford, 2nd Edition, Pearson Education, 2011 - 2. Communication skills, Sanjay Kumar, Pushpalata, 1stEdition, Oxford Press, 2011 - 3. Organizational Behaviour, Stephen .P. Robbins, 1st Edition, Pearson, 2013 - 4. Brilliant- Communication skills, Gill Hasson, 1stEdition, Pearson Life, 2011 - The Ace of Soft Skills: Attitude, Communication and Etiquette for success, Gopala Swamy Ramesh, 5th Edition, Pearson, 2013 - 6. Developing your influencing skills, Deborah Dalley, Lois Burton, Margaret, Green hall, 1st Edition Universe of Learning LTD, 2010 - 7. Communication skills for professionals, Konar nira, 2ndEdition, New arrivals PHI, 2011 - 8. Personality development and soft skills, Barun K Mitra, IstEdition, Oxford Press, 2011 - Soft skill for everyone, Butter Field, 1st Edition, Cengage Learning india pvt.ltd, 2011 - 10. Soft skills and professional communication, Francis Peters SJ, 1stEdition, Mc Graw Hill Education, 2011 - 11. Effective communication, John Adair, 4th Edition, Pan Mac Millan, 2009 - 12. Bringing out the best in people, Aubrey Daniels, 2ndEdition, Mc Graw Hill, 1999 2 Principal # BP 106RBT.REMEDIAL BIOLOGY (Theory) 30 Hours **Scope:** To learn and understand the components of living world, structure and functional system of plant and animal kingdom. Objectives: Upon completion of the course, the student shall be able to - know the classification and salient features of five kingdoms of life - · understand the basic components of anatomy & physiology of plant - know understand the basic components of anatomy & physiology animal with special reference to human **UNIT I** 07 Hours ## Living world: - · Definition and characters of living organisms - Diversity in the living world - Binomial nomenclature - Five kingdoms of life and basis of classification. Salient features of Monera, Potista, Fungi, Animalia and Plantae, Virus, ### Morphology of Flowering plants - Morphology of different parts of flowering plants Root, stem, inflorescence, flower, leaf, fruit, seed. - General Anatomy of Root, stem, leaf of monocotyledons & Dicotylidones. UNIT II 07 Hours # Body fluids and circulation - Composition of blood, blood groups, coagulation of blood - Composition and functions of lymph - Human circulatory system - Structure of human heart and blood vessels - · Cardiac cycle, cardiac output and ECG # **Digestion and Absorption** - Human alimentary canal and digestive glands - Role of digestive enzymes - Digestion, absorption and assimilation of digested food # Breathing and respiration - Human respiratory system - Mechanism of breathing and its regulation - Exchange of gases, transport of gases and regulation of respiration - Respiratory volumes spuojula se propinsi de la constanta con Principat Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 UNIT III 07 Hours # Excretory products and their elimination - Modes of excretion - Human excretory system- structure and function - Urine formation - Rennin angiotensin system # Neural control and coordination - Definition and classification of nervous system - Structure of a neuron - · Generation and conduction of nerve impulse - · Structure of brain and spinal cord - · Functions of cerebrum, cerebellum, hypothalamus and medulla oblongata # Chemical coordination and regulation - Endocrine glands and their secretions - · Functions of hormones secreted by endocrine glands ## Human reproduction - Parts of female reproductive system - · Parts of male reproductive system - Spermatogenesis and Oogenesis - Menstrual cycle UNIT IV 05 Hours # Plants and mineral nutrition: - Essential mineral, macro and micronutrients - Nitrogen metabolism, Nitrogen cycle, biological nitrogen fixation #### **Photosynthesis** Autotrophic nutrition, photosynthesis, Photosynthetic pigments, Factors affecting photosynthesis. UNIT V 04 Hours Plant respiration: Respiration, glycolysis, fermentation (anaerobic). ## Plant growth and development Phases and rate of plant growth, Condition of growth, Introduction to plant growth regulators # Cell - The unit of life Structure and functions of cell and cell organelles. Cell division ## Tissues Definition, types of tissues, location and functions. Principal Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 START SEE ### **Text Books** - a. Text book of Biology by S. B. Gokhale - b. A Text book of Biology by Dr. Thulajappa and Dr. Seetaram. # Reference Books - a. A Text book of Biology by B.V. Sreenivasa Naidu - b. A Text book of Biology by Naidu and Murthy - c. Botany for Degree students By A.C.Dutta. - d.Outlines of Zoology by M. Ekambaranatha ayyer and T. N. Ananthakrishnan. - e. A manual for pharmaceutical biology practical by S.B. Gokhale and C. K. Kokate Solution 180 # BP112RBP.REMEDIAL BIOLOGY (Practical) 30 Hours - 1. Introduction to experiments in biology - a) Study of Microscope - b) Section cutting techniques - c) Mounting and staining - d) Permanent slide preparation - 2. Study of cell and its inclusions - 3. Study of Stem, Root, Leaf, seed, fruit, flower and their modifications - 4. Detailed study of frog by using computer models - 5. Microscopic study and identification of tissues pertinent to Stem, Root Leaf, seed, fruit and flower - 6. Identification of bones - 7. Determination of blood group - 8. Détermination of blood pressure - 9. Determination of tidal volume #### Reference Books - 1. Practical human anatomy and physiology. by S.R.Kale and R.R.Kale. - 2. A Manual of pharmaceutical biology practical by S.B.Gokhale, C.K.Kokateand S.P.Shriwastava. - 3. Biology practical manual according to National core curriculum .Biology forum of Karnataka, Prof .M.J.H.Shafi # BP 106RMT.REMEDIAL MATHEMATICS (Theory) 30 Hours **Scope:** This is an introductory course in mathematics. This subject deals with the introduction to Partial fraction, Logarithm, matrices and Determinant, Analytical geometry, Calculus, differential equation and Laplace transform. Objectives: Upon completion of the course the student shall be able to:- - 1. Know the theory and their application in Pharmacy - 2. Solve the different types of problems by applying theory - 3. Appreciate the important application of mathematics in Pharmacy #### **Course Content:** UNIT-I 06 Hours #### • Partial fraction
Introduction, Polynomial, Rational fractions, Proper and Improper fractions, Partial fraction, Resolving into Partial fraction, Application of Partial Fraction in Chemical Kinetics and Pharmacokinetics Logarithms Introduction, Definition, Theorems/Properties of logarithms, Common logarithms, Characteristic and Mantissa, worked examples, application of logarithm to solve pharmaceutical problems. #### Function: Real Valued function, Classification of real valued functions, · Limits and continuity: Introduction, Limit of a function, Definition of limit of a function $(\in -\delta)$ definition, $\lim_{n \to \infty} \frac{x^n - a^n}{n} = na^{n-1}$, $\lim_{n \to \infty} \frac{\sin \theta}{n} = 1$, UNIT-II 06 Hours #### • Matrices and Determinant: Introduction matrices, Types of matrices, Operation on matrices, Transpose of a matrix, Matrix Multiplication, Determinants, Properties of determinants, Product of determinants, Minors and co-Factors, Adjoint or adjugate of a square matrix, Singular and non-singular matrices, Inverse of a matrix, Solution of system of linear of equations using matrix method, Cramer's rule, Characteristic equation and roots of a square matrix, Cayley-Hamilton theorem, Application of Matrices in solving Pharmacokinetic equations Principal Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 A Chingson A Service of the 06 Hours #### UNIT - III • Calculus Differentiation: Introductions, Derivative of a function, Derivative of a constant, Derivative of a product of a constant and a function, Derivative of the sum or difference of two functions, Derivative of the product of two functions (product formula). Derivative of the quotient of two functions (Quotient formula) – Without Proof, Derivative of x^n w.r.tx, where n is any rational number, Derivative of e^x , Derivative of $\log_e x$, Derivative of e^x . Derivative of trigonometric functions from first principles (without Proof), Successive Differentiation, Conditions for a function to be a maximum or a minimum at a point. Application UNIT-IV 06 Hours Analytical Geometry Introduction: Signs of the Coordinates, Distance formula, Straight Line: Slope or gradient of a straight line, Conditions for parallelism and perpendicularity of two lines, Slope of a line joining two points, Slope – intercept form of a straight line Integration: Introduction, Definition, Standard formulae, Rules of integration, Method of substitution, Method of Partial fractions, Integration by parts, definite integrals, application **UNIT-V** 06 Hours - Differential Equations: Some basic definitions, Order and degree, Equations in separable form, Homogeneous equations, Linear Differential equations, Exact equations, Application in solving Pharmacokinetic equations - Laplace Transform: Introduction, Definition, Properties of Laplace transform, Laplace Transforms of elementary functions, Inverse Laplace transforms, Laplace transform of derivatives, Application to solve Linear differential equations, Application in solving Chemical kinetics and Pharmacokinetics equations ## Recommended Books (Latest Edition) - 1. Differential Calculus by Shanthinarayan - 2. Pharmaceutical Mathematics with application to Pharmacy by Panchaksharappa Gowda D.H. - 3. Integral Calculus by Shanthinarayan - 4. Higher Engineering Mathematics by Dr.B.S.Grewal Semester II # BP 201T. HUMAN ANATOMY AND PHYSIOLOGY-II (Theory) 45 Hours Scope: This subject is designed to impart fundamental knowledge on the structure and functions of the various systems of the human body. It also helps in understanding both homeostatic mechanisms. The subject provides the basic knowledge required to understand the various disciplines of pharmacy. Objectives: Upon completion of this course the student should be able to: - 1. Explain the gross morphology, structure and functions of various organs of the human body. - Describe the various homeostatic mechanisms and their imbalances. - 3. Identify the various tissues and organs of different systems of human body. - 4. Perform the hematological tests like blood cell counts, haemoglobin estimation, bleeding/clotting time etc and also record blood pressure, heart rate, pulse and respiratory volume. - 5. Appreciate coordinated working pattern of different organs of each system - 6. Appreciate the interlinked mechanisms in the maintenance of normal functioning (homeostasis) of human body. #### Course Content: Unit I 10 hours Nervous system Organization of nervous system, neuron, neuroglia, classification and properties of nerve fibre, electrophysiology, action potential, nerve impulse, receptors, synapse, neurotransmitters. Central nervous system: Meninges, ventricles of brain and cerebrospinal fluid.structure and functions of brain (cerebrum, brain stem, cerebellum), spinal cord (gross structure, functions of afferent and efferent nerve tracts, reflex activity) Unit II 06 hours Digestive system Anatomy of GI Tract with special reference to anatomy and functions of stomach, (Acid production in the stomach, regulation of acid production through parasympathetic nervous system, pepsin role in protein digestion) small intestine Principal Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 54 and large intestine, anatomy and functions of salivary glands, pancreas and liver, movements of GIT, digestion and absorption of nutrients and disorders of GIT. # Energetics Formation and role of ATP, Creatinine Phosphate and BMR. ### Unit III # Respiratory system 10 hours Anatomy of respiratory system with special reference to anatomy of lungs, mechanism of respiration, regulation of respiration. Lung Volumes and capacities transport of respiratory gases, artificial respiration, and resuscitation methods. # Urinary system Anatomy of urinary tract with special reference to anatomy of kidney and nephrons, functions of kidney and urinary tract, physiology of urine formation, micturition reflex and role of kidneys in acid base balance, role of RAS in kidney and disorders of kidney. Unit JV 10 hours ### • Endocrine system Classification of hormones, mechanism of hormone action, structure and functions of pituitary gland, thyroid gland, parathyroid gland, adrenal gland, pancreas, pineal gland, thymus and their disorders. Unit V 09 hours # Reproductive system Anatomy of male and female reproductive system, Functions of male and female reproductive system, sex hormones, physiology of menstruation, fertilization, spermatogenesis, oogenesis, pregnancy and parturition ## • Introduction to genetics Chromosomes, genes and DNA, protein synthesis, genetic pattern of inheritance The Hand of the State St Principat Vaaqdevi College of Pharmacy 55 # BP 207 P. HUMAN ANATOMY AND PHYSIOLOGY (Practical) 4 Hours/week Practical physiology is complimentary to the theoretical discussions in physiology. Practicals allow the verification of physiological processes discussed in theory classes through experiments on living tissue, intact animals or normal human beings. This is helpful for developing an insight on the subject. - 1. To study the integumentary and special senses using specimen, models, etc., - 2. To study the nervous system using specimen, models, etc., - 3. To study the endocrine system using specimen, models, etc - 4. To demonstrate the general neurological examination - 5. To demonstrate the function of olfactory nerve - 6. To examine the different types of taste. - 7. To demonstrate the visual acuity - 8. To demonstrate the reflex activity - 9. Recording of body temperature - 10. To demonstrate positive and negative feedback mechanism. - 11. Determination of tidal volume and vital capacity. - 12. Study of digestive, respiratory, cardiovascular systems, urinary and reproductive systems with the help of models, charts and specimens. - 13. Recording of basal mass index - 14. Study of family planning devices and pregnancy diagnosis test. - 15. Demonstration of total blood count by cell analyser - 16. Permanent slides of vital organs and gonads. # **Recommended Books (Latest Editions)** - 1. Essentials of Medical Physiology by K. Sembulingam and P. Sembulingam. Jaypee brothers medical publishers, New Delhi. - 2. Anatomy and Physiology in Health and Illness by Kathleen J.W. Wilson, Churchill Livingstone, New York - 3. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co,Riverview,MI USA - 4. Text book of Medical Physiology- Arthur C, Guyton and John. E. Hall. Miamisburg, OH, U.S.A. - 5. Principles of Anatomy and Physiology by Tortora Grabowski. Palmetto, GA, U.S.A. - 6. Textbook of Human Histology by Inderbir Singh, Jaypee brothers medical publishers, New Delhi. - 7. Textbook of Practical Physiology by C.L. Ghai, Jaypee brothers medical publishers, New Delhi. - 8. Practical workbook of Human Physiology by K. Srinageswari and Rajeev Sharma, Jaypee brother's medical publishers, New Delhi. # Reference Books: - 1. Physiological basis of Medical Practice-Best and Tailor: Williams & Wilkins Co, Riverview, MI USA - 2. Text book of Medical Physiology- Arthur C, Guyton and John. E. Hall. Miamisburg, OH, U.S.A. - 3. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterrje ,Academic Publishers Kolkata ### BP202T. PHARMACEUTICAL ORGANIC CHEMISTRY -I (Theory) 45 Hours Scope: This subject deals with classification and nomenclature of simple organic compounds, structural isomerism, intermediates forming in reactions, important physical properties, reactions and methods of preparation of these compounds. The syllabus also emphasizes on mechanisms and orientation of reactions. Objectives: Upon completion of the course the student shall be able to - 1. write the structure, name and the type of isomerism of the organic compound - 2. write the reaction, name the reaction and orientation of reactions - 3. account for reactivity/stability of compounds, - 4. identify/confirm the identification of organic compound #### **Course Content:** General methods of preparation and reactions of compounds
superscripted with asterisk (*) to be explained To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences UNIT-I 07 Hours Classification, nomenclature and isomerism Classification of Organic Compounds Common and IUPAC systems of nomenclature of organic compounds (up to 10 Carbons open chain and carbocyclic compounds) Structural isomerisms in organic compounds ## **UNIT-II10 Hours** Alkanes*, Alkenes* and Conjugated dienes* SP³ hybridization in alkanes, Halogenation of alkanes, uses of paraffins. Stabilities of alkenes, SP² hybridization in alkenes E_1 and E_2 reactions – kinetics, order of reactivity of alkyl halides, rearrangement of carbocations, Saytzeffs orientation and evidences. E_1 verses E_2 reactions, Factors affecting E_1 and E_2 reactions. Ozonolysis, electrophilic addition reactions of alkenes, Markownikoff's orientation, free radical addition reactions of alkenes, Anti Markownikoff's orientation. Stability of conjugated dienes, Diel-Alder, electrophilic addition, free radical addition reactions of conjugated dienes, allylic rearrangement **UNIT-III10 Hours** # Alkyl halides* SN_1 and SN_2 reactions - kinetics, order of reactivity of alkyl halides, stereochemistry and rearrangement of carbocations. SN₁ versus SN₂ reactions, Factors affecting SN₁ and SN₂ reactions Structure and uses of ethylchloride, Chloroform, trichloroethylene, tetrachloroethylene, dichloromethane, tetrachloromethane and iodoform. Alcohols*- Qualitative tests, Structure and uses of Ethyl alcohol, Methyl alcohol, chlorobutanol, Cetosteryl alcohol, Benzyl alcohol, Glycerol, Propylene glycol #### **UNIT-IV10 Hours** Carbonyl compounds* (Aldehydes and ketones) Nucleophilic addition, Electromeric effect, aldo) condensation, Crossed Aldol condensation, Cannizzaro reaction, Crossed Cannizzaro reaction, Benzoin condensation, Perkin condensation, qualitative tests, Structure and uses of Formaldehyde, Paraldehyde, Acetone, Chloral hydrate, Hexamine, Benzaldehyde, Vanilin, Cinnamaldehyde. UNIT-V 08 Hours Carboxylic acids* Acidity of carboxylic acids, effect of substituents on acidity, inductive effect and qualitative tests for carboxylic acids, amide and ester Structure and Uses of Acetic acid, Lactic acid, Tartaric acid, Citric acid, Succinic acid. Oxalic acid, Salicylic acid, Benzoic acid, Benzyl benzoate, Dimethyl phthalate, Methyl salicylate and Acetyl salicylic acid Aliphatic amines* - Basicity, effect of substituent on Basicity. Qualitative test, Structure and uses of Ethanolamine, Ethylenediamine, Amphetamine ## BP208P. PHARMACEUTICAL ORGANIC CHEMISTRY -I (Practical) 4 Hours / week - 1. Systematic qualitative analysis of unknown organic compounds like - 1. Preliminary test: Color, odour, aliphatic/aromatic compounds, saturation and unsaturation, etc. - 2. Detection of elements like Nitrogen, Sulphur and Halogen by Lassaigne's test - 3. Solubility test - Functional group test like Phenols, Amides/ Urea, Carbohydrates, Amines, Carboxylic acids, Aldehydes and Ketones, Alcohols, Esters, Aromatic and Halogenated Hydrocarbons, Nitro compounds and Anilides. - 5. Melting point/Boiling point of organic compounds - 6. Identification of the unknown compound from the literature using melting point/ boiling point. - 7. Preparation of the derivatives and confirmation of the unknown compound by melting point/ boiling point. - 8. Minimum 5 unknown organic compounds to be analysed systematically. - 2. Preparation of suitable solid derivatives from organic compounds - 3. Construction of molecular models ### Recommended Books (Latest Editions) - 1. Organic Chemistry by Morrison and Boyd - 2. Organic Chemistry by I.L. Finar, Volume-I - 3. Textbook of Organic Chemistry by B.S. Bahl & Arun Bahl. - 4. Organic Chemistry by P.L.Soni - 5. Practical Organic Chemistry by Mann and Saunders. - 6. Vogel's text book of Practical Organic Chemistry - 7. Advanced Practical organic chemistry by N.K. Vishnoi. - 8. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz. - 9. Reaction and reaction mechanism by Ahluwaliah/Chatwal. # BP203 T. BIOCHEMISTRY (Theory) 45 Hours Scope: Biochemistry deals with complete understanding of the molecular levels of the chemical process associated with living cells. The scope of the subject is providing biochemical facts and the principles to understand metabolism of nutrient molecules in physiological and pathological conditions. It is also emphasizing on genetic organization of mammalian genome and hetero & autocatalytic functions of DNA. Objectives: Upon completion of course student shell able to - 1. Understand the catalytic role of enzymes, importance of enzyme inhibitors in design of new drugs, therapeutic and diagnostic applications of enzymes. - 2. Understand the metabolism of nutrient molecules in physiological and pathological conditions. - 3. Understand the genetic organization of mammalian genome and functions of DNA in the synthesis of RNAs and proteins. #### Course Content: **UNIT I** 08 Hours #### Biomolecules Introduction, classification, chemical nature and biological role of carbohydrate, lipids, nucleic acids, amino acids and proteins. ### Bioenergetics Concept of free energy, endergonic and exergonic reaction, Relationship between free energy, enthalpy and entropy; Redox potential. Energy rich compounds; classification; biological significances of ATP and cyclic $\ensuremath{\mathsf{AMP}}$ **UNIT II** 10 Hours #### Carbohydrate metabolism Glycolysis - Pathway, energetics and significance Citric acid cycle- Pathway, energetics and significance HMP shunt and its significance; Glucose-6-Phosphate dehydrogenase (G6PD) deficiency Glycogen metabolism Pathways and glycogen storage diseases (GSD) Gluconeogenesis- Pathway and its significance Hormonal regulation of blood glucose level and Diabetes mellitus # Biological oxidation Electron transport chain (ETC) and its mechanism. Principal Oxidative phosphorylation & its mechanism and substrate level phosphorylation Inhibitors ETC and oxidative phosphorylation/Uncouplers **UNIT III** 10 Hours Lipid metabolism β-Oxidation of saturated fatty acid (Palmitic acid) 1 A PORT OF THE PROPERTY Formation and utilization of ketone bodies; ketoacidosis De novo synthesis of fatty acids (Palmitic acid) Biological significance of cholesterol and conversion of cholesterol into bile acids, steroid hormone and vitamin D Disorders of lipid metabolism: Hypercholesterolemia, atherosclerosis, fatty liver and obesity. #### Amino acid metabolism General reactions of amino acid metabolism: Transamination, deamination & decarboxylation, urea cycle and its disorders Catabolism of phenylalanine and tyrosine and their metabolic disorders (Phenyketonuria, Albinism, alkeptonuria, tyrosinemia) Synthesis and significance of biological substances; 5-HT, melatonin, dopamine, noradrenaline, adrenaline Catabolism of heme; hyperbilirubinemia and jaundice UNIT IV 10 Hours # Nucleic acid metabolism and genetic information transfer Biosynthesis of purine and pyrimidine nucleotides Catabolism of purine nucleotides and Hyperuricemia and Gout disease Organization of mammalian genome Structure of DNA and RNA and their functions DNA replication (semi conservative model) Transcription or RNA synthesis Genetic code, Translation or Protein synthesis and inhibitors & Principal Principal UNIT V 07 Hours # Enzymes Introduction, properties, nomenclature and IUB classification of enzymes Enzyme kinetics (Michaelis plot, Line Weaver Burke plot) Enzyme inhibitors with examples Regulation of enzymes: enzyme induction and repression, allosteric enzymes regulation Therapeutic and diagnostic applications of enzymes and isoenzymes Coenzymes -Structure and biochemical functions **BP 209 P. BIOCHEMISTRY (Practical)** 4 Hours / Week - 1. Qualitative analysis of carbohydrates (Glucose, Fructose, Lactose, Maltose, Sucrose and starch) - 2. Identification tests for Proteins (albumin and Casein) - 3. Quantitative analysis of reducing sugars (DNSA method) and Proteins (Biuret method) - 4. Qualitative analysis of urine for abnormal constituents - Determination of blood creatinine - 6. Determination of blood sugar - Determination of serum total cholesterol - Preparation of buffer solution and measurement of pH - 9. Study of enzymatic hydrolysis of starch - 10. Determination of Salivary amylase activity - 11. Study the effect of Temperature on Salivary amylase activity. - 12. Study the effect of substrate concentration on salivary amylase activity. Principal # **Recommended Books (Latest Editions)** 1. Principles of Biochemistry by Lehninger. 2. Harper's Biochemistry by Robert K. Murry, Daryl K. Granner and Victor W. Rodwell. 3. Biochemistry by Stryer. 4. Biochemistry by D. Satyanarayan and U.Chakrapani 5. Textbook of Biochemistry by RamaRao. 6. Textbook of Biochemistry by Deb. 7. Outlines of Biochemistry by Conn and Stumpf 8. Practical Biochemistry by R.C. Gupta and S. Bhargavan. - 9. Introduction of Practical Biochemistry by David T. Plummer. (3rd Edition) - 10. Practical Biochemistry for Medical students by Rajagopal and Ramakrishna. 11. Practical Biochemistry by Harold Varley. 1 ## **BP 204T.PATHOPHYSIOLOGY (THEORY)** 45Hours Scope: Pathophysiology is the study of causes of diseases and reactions of the body to such disease producing causes. This course is designed to impart a thorough knowledge of the relevant aspects of pathology of various conditions with reference to its pharmacological applications, and understanding of basic pathophysiological mechanisms. Hence it will not only help to study the syllabus of pathology, but also to get baseline knowledge required to practice medicine safely, confidently, rationally and effectively. Objectives: Upon completion of the subject student shall be able to - - 1. Describe the etiology and pathogenesis of the selected disease states; - 2. Name the signs and symptoms of the diseases; and - 3. Mention the
complications of the diseases. #### Course content: Unit I ## 10Hours Basic principles of Cell injury and Adaptation: Introduction, definitions, Homeostasis, Components and Types of Feedback systems, Causes of cellular injury, Pathogenesis (Cell membrane damage, Mitochondrial damage, Ribosome damage, Nuclear damage), Morphology of cell injury – Adaptive changes (Atrophy, Hypertrophy, hyperplasia, Metaplasia, Dysplasia), Cell swelling, Intra cellular accumulation, Calcification, Enzyme leakage and Cell Death Acidosis & Alkalosis, Electrolyte imbalance Vaagdevi College of Pharmacy Basic mechanism involved in the process of inflammation and repair: Introduction, Clinical signs of inflammation, Different types of Inflammation, Mechanism of Inflammation – Alteration in vascular permeability and blood flow, migration of WBC's, Mediators of inflammation, Basic principles of wound healing in the skin, Pathophysiology of Atherosclerosis Unit II 10Hours Cardiovascular System: Hypertension, congestive heart failure, ischemic heart disease (angina,myocardial infarction, atherosclerosis and arteriosclerosis) - Respiratory system: Asthma, Chronic obstructive airways diseases. - Renal system: Acute and chronic renal failure Unit II 10Hours Haematological Diseases: Iron deficiency, megaloblastic anemia (Vit B12 and folic acid), sickle cell anemia, thalasemia, hereditary acquired anemia, hemophilia - Endocrine system: Diabetes, thyroid diseases, disorders of sex hormones - Nervous system: Epilepsy, Parkinson's disease, stroke, psychiatric disorders: depression, schizophrenia and Alzheimer's disease. - Gastrointestinal system: Peptic Ulcer Unit IV 8 Hours - Inflammatory bowel diseases, jaundice, hepatitis (A,B,C,D,E,F) alcoholic liver disease. - Disease of bones and joints: Rheumatoid arthritis, osteoporosis and gout - Principles of cancer: classification, etiology and pathogenesis of cancer - · Diseases of bones and joints: Rheumatoid Arthritis, Osteoporosis, Gout - Principles of Cancer: Classification, etiology and pathogenesis of Cancer Unit V 7 Hours · Infectious diseases: Meningitis, Typhoid, Leprosy, Tuberculosis Urinary tract infections · Sexually transmitted diseases: AIDS, Syphilis, Gonorrhea Recommended Books (Latest Editions) Principat Vaagdevi €ollege of Pharmacy Hanamkonda, Warn 505 002 - 1. Vinay Kumar, Abul K. Abas, Jon C. Aster; Robbins & Cotran Pathologic Basis of Disease; South Asia edition; India; Elsevier; 2014. - 2. Harsh Mohan; Text book of Pathology; 6th edition; India; Jaypee Publications; 2010. - 3. Laurence B, Bruce C, Bjorn K.; Goodman Gilman's The Pharmacological Basis of Therapeutics; 12th edition; New York; McGraw-Hill; 2011. - 4. Best, Charles Herbert 1899-1978; Taylor, Norman Burke 1885-1972; West, John B (John Burnard); Best and Taylor's Physiological basis of medical practice; 12th ed; united states; - 5. William and Wilkins, Baltimore; 1991 [1990 printing]. - 6. Nicki R. Colledge, Brian R. Walker, Stuart H. Ralston; Davidson's Principles and Practice of Medicine; 21st edition; London; ELBS/Churchill Livingstone; 2010. - 7. Guyton A, John .E Hall; Textbook of Medical Physiology; 12th edition; WB Saunders Company; 2010. - 8. Joseph DiPiro, Robert La Talbert, Gary Yee, Barbara Wells, L. Michael Posey; Pharmacotherapy: A Pathophysiological Approach; 9th edition; London; McGraw-Hill Medical; 2014. - V. Kumar, R. S. Cotran and S. L. Robbins; Basic Pathology; 6th edition; Philadelphia; WB Saunders Company; 1997. - Roger Walker, Clive Edwards; Clinical Pharmacy and Therapeutics; 3rd edition; London; Churchill Livingstone publication; 2003. ## Recommended Journals - 1. The Journal of Pathology. ISSN: 1096-9896 (Online) - 2. The American Journal of Pathology. ISSN: 0002-9440 - 3. Pathology. 1465-3931 (Online) - 4. International Journal of Physiology, Pathophysiology and Pharmacology. ISSN: 1944-8171 (Online) - 5. Indian Journal of Pathology and Microbiology. ISSN-0377-4929. # BP205 T. COMPUTER APPLICATIONS IN PHARMACY (Theory) 30 Hrs (2 Hrs/Week) Scope: This subject deals with the introduction Database, Database Management system, computer application in clinical studies and use of databases. Objectives: Upon completion of the course the student shall be able to - 1. know the various types of application of computers in pharmacy - 2. know the various types of databases - 3. know the various applications of databases in pharmacy ### Course content: UNIT – I 06 hours Number system: Binary number system, Decimal number system, Octal number system, Hexadecimal number systems, conversion decimal to binary, binary to decimal, octal to binary etc, binary addition, binary subtraction – One's complement ,Two's complement method, binary multiplication, binary division Concept of Information Systems and Software: Information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project UNIT-II 06 hours Web technologies:Introduction to HTML, XML,CSS and Programming languages, introduction to web servers and Server Products Introduction to databases, MYSQL, MS ACCESS, Pharmacy Drug database UNIT - III 06 hours Application of computers in Pharmacy – Drug information storage and retrieval, Pharmacokinetics, Mathematical model in Drug design, Hospital and Clinical Pharmacy, Electronic Prescribing and discharge (EP) systems, barcode medicine identification and automated dispensing of drugs, mobile technology and adherence monitoring Diagnostic System, Lab-diagnostic System, Patient Monitoring System, Pharma Information System Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 S of Pharmac UNIT - IV 06 hours Bioinformatics: Introduction, Objective of Bioinformatics, Bioinformatics Databases, Concept of Bioinformatics, Impact of Bioinformatics in Vaccine Discovery UNIT-V 06 hours Computers as data analysis in Preclinical development: Chromatographic dada analysis(CDS), Laboratory Information management System (LIMS) and Text Information Management System(TIMS) Pharmaco Pharmaco # BP210P. COMPUTER APPLICATIONS IN PHARMACY (Practical) - L. Design a questionnaire using a word processing package to gather information about a particular disease. - 2. Create a HTML web page to show personal information. - Retrieve the information of a drug and its adverse effects using online tools - 4 Creating mailing labels Using Label Wizard, generating label in MS WORD - Create a database in MS Access to store the patient information with the required fields Using access. - 6. Design a form in MS Access to view, add, delete and modify the patient record in the database - 7. Generating report and printing the report from patient database - 8. Creating invoice table using MS Access - 9. Drug information storage and retrieval using MS Access - 10. Creating and working with queries in MS Access - 11. Exporting Tables, Queries, Forms and Reports to web pages - 12. Exporting Tables, Queries, Forms and Reports to XML pages ### Recommended books (Latest edition): - 1. Computer Application in Pharmacy William E.Fassett –Lea and Febiger, 600 South Washington Square, USA, (215) 922-1330. - Computer Application in Pharmaceutical Research and Development –Sean Ekins Wiley-Interscience, A John Willey and Sons, INC., Publication, USA - 3. Bioinformatics (Concept, Skills and Applications) S.C.Rastogi-CBS Publishers and Distributors, 4596/1- A, 11 Darya Gani, New Delhi 110 002(INDIA) - Microsoft office Access 2003, Application Development Using VBA, SQL Server, DAP and Infopath — Cary N.Prague – Wiley Dreamtech India (P) Ltd., 4435/7, Ansari Road, Daryagani, New Delhi - 110002 # BP 206 T. ENVIRONMENTAL SCIENCES (Theory) 30 hours Scope:Environmental Sciences is the scientific study of the environmental system and the status of its inherent or induced changes on organisms. It includes not only the study of physical and biological characters of the environment but also the social and cultural factors and the impact of man on environment. Objectives: Upon completion of the course the student shall be able to: - 1. Create the awareness about environmental problems among learners. - 2. Impart basic knowledge about the environment and its allied problems. - 3. Develop an attitude of concern for the environment. - 4. Motivate learner to participate in environment protection and environment improvement. - 5. Acquire skills to help the concerned individuals in identifying and solving environmental problems. - 6. Strive to attain harmony with Nature. ### Course content: Unit-I 10hours The Multidisciplinary nature of environmental studies Natural Resources Renewable and non-renewable resources: Natural resources and associated problems a) Forest resources; b) Water resources; c) Mineral resources; d) Food resources; e) Energy resources; f) Land resources: Role of an individual in conservation of natural resources. Unit-II 10hours **Ecosystems** - Concept of an ecosystem. - Structure and function of an ecosystem. - Introduction, types, characteristic features, structure and function of the ecosystems: Forest ecosystem; Grassland ecosystem; Desert ecosystem; Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) Unit- III 10hours Environmental Pollution: Air pollution; Water pollution; Soil pollution Principal Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 70 # Recommended Books (Latest edition): - 1. Y.K. Sing, Environmental Science, New Age International Pvt, Publishers, Bangalore - 2. Agarwal, K.C. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner. - 3. Bharucha Erach, The Biodiversity of India, Mapin Pu blishing Pvt. Ltd., Ahmedabad 380 013, India, - 4. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p - 5. Clark R.S., Marine Pollution, Clanderson Press Oxford - 6. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumbai, 1196p - 7. De A.K.,
Environmental Chemistry, Wiley Eastern Ltd. - 8. Down of Earth, Centre for Science and Environment ## SEMESTER III ## BP301T. PHARMACEUTICAL ORGANIC CHEMISTRY -II (Theory) Scope: This subject deals with general methods of preparation and reactions of some organic compounds. Reactivity of organic compounds are also studied here. The syllabus emphasizes on mechanisms and orientation of reactions. Chemistry of fats and oils are also included in the syllabus. Objectives: Upon completion of the course the student shall be able to - 1. write the structure, name and the type of isomerism of the organic compound - 2. write the reaction, name the reaction and orientation of reactions - 3. account for reactivity/stability of compounds, - 4. prepare organic compounds #### Course Content: General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences UNIT I 10 Hours #### Benzene and its derivatives - A. Analytical, synthetic and other evidences in the derivation of structure of benzene, Orbital picture, resonance in benzene, characters, Huckel's rule - B. Reactions of benzene nitration, sulphonation, halogenationlimitations, reactivity, Friedelcrafts alkylationreactivity, Friedelcrafts acylation. - C. Substituents, effect of substituents on reactivity and orientation of substituted benzene compounds towards electrophilic substitution reaction - D. Structure and uses of DDT, Saccharin, BHC and Chloramine 10 Hours UNIT II - Phenols* Acidity of phenols, effect of substituents on acidity, qualitative tests, Structure and uses of phenol, cresols, resorcinol, naphthols - Aromatic Amines* Basicity of amines, effect of substituents on basicity, and synthetic uses of aryl diazonium salts - Aromatic Acids* -Acidity, effect of substituents on acidity and important reactions of benzoic acid. #### UNIT III 10 Hours - **Fats and Oils** - a. Fatty acids reactions. Principal Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 73 - b. Hydrolysis, Hydrogenation, Saponification and Rancidity of oils, Drying oils. - c. Analytical constants Acid value, Saponification value, Ester value, Iodine value, Acetyl value, Reichert Meissl (RM) value significance and principle involved in their determination. **UNIT IV** 08 Hours - Polynuclear hydrocarbons: - a. Synthesis, reactions - b. Structure and medicinal uses of Naphthalene, Phenanthrene, Anthracene, Diphenylmethane, Triphenylmethane and their derivatives **UNIT V** 07 Hours Cyclo alkanes* Stabilities – Baeyer's strain theory, limitation of Baeyer's strain theory, Coulson and Moffitt's modification, Sachse Mohr's theory (Theory of strainless rings), reactions of cyclopropane and cyclobutane only ## BP305P. PHARMACEUTICAL ORGANIC CHEMISTRY -II (Practical) 4 Hrs/week - I Experiments involving laboratory techniques - Recrystallization - Steam distillation - Determination of following oil values (including standardization of reagents) - Acid value - Saponification value - Iodine value ## III Preparation of compounds - Benzanilide/Phenyl benzoate/Acetanilide from Aniline/ Phenol /Aniline by acylation reaction. - 2,4,6-Tribromo aniline/Para bromo acetanilide from Aniline/ - Acetanilide by halogenation (Bromination) reaction. - 5-Nitro salicylic acid/Meta di nitro benzene from Salicylic acid / Nitro benzene by nitration reaction. - Benzoic acid from Benzyl chloride by oxidation reaction. - Benzoic acid/ Salicylic acid from alkyl benzoate/ alkyl salicylate by hydrolysis reaction. - 1-Phenyl azo-2-napthol from Aniline by diazotization and coupling reactions. - Benzil from Benzoin by oxidation reaction. - Dibenzal acetone from Benzaldehyde by Claison Schmidt reaction - Cinnammic acid from Benzaldehyde by Perkin reaction - P-Iodo benzoic acid from P-amino benzoic acid #### **Recommended Books (Latest Editions)** - 1. Organic Chemistry by Morrison and Boyd - 2. Organic Chemistry by I.L. Finar, Volume-I - 3. Textbook of Organic Chemistry by B.S. Bahl & Arun Bahl. - 4. Organic Chemistry by P.L.Soni - 5. Practical Organic Chemistry by Mann and Saunders. - 6. Vogel's text book of Practical Organic Chemistry - 7. Advanced Practical organic chemistry by N.K. Vishnoi. Principal Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 Phermacy and part Co. 8. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz. ## BP302T. PHYSICAL PHARMACEUTICS-I (Theory) 45Hours Scope: The course deals with the various physica and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms. Objectives: Upon the completion of the course student shall be able to - Understand various physicochemical properties of drug molecules in the designing the dosage forms - 2. Know the principles of chemical kinetics & to use them for stability testing nad determination of expiry date of formulations - 3. Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms. #### **Course Content:** UNIT-I 10 Hours Solubility of drugs: Solubility expressions, mechanisms of solute solvent interactions, ideal solubility parameters, solvation & association, quantitative approach to the factors influencing solubility of drugs, diffusion principles in biological systems. Solubility of gas in liquids, solubility of liquids in liquids, (Binary solutions, ideal solutions) Raoult's law, real solutions. Partially miscible liquids, Critical solution temperature and applications. Distribution law, its limitations and applications UNIT-II 10Hours States of Matter and properties of matter: State of matter, changes in the state of matter, latent heats, vapour pressure, sublimation critical point, eutectic mixtures, gases, aerosols – inhalers, relative humidity, liquid complexes, liquid crystals, glassy states, solid-crystalline, amorphous & polymorphism. Physicochemical properties of drug molecules: Refractive index, optical rotation, dielectric constant, dipole moment, dissociation constant, determinations and applications UNIT-III 08 Hours Surface and interfacial phenomenon: Liquid interface, surface & interfacial tensions, surface free energy, measurement of surface & interfacial tensions, spreading coefficient, adsorption at liquid interfaces, surface active agents, HLB Scale, solubilisation, detergency, adsorption at solid interface. UNIT-IV 08Hours Complexation and protein binding: Introduction, Classification of Complexation, Applications, methods of analysis, protein binding, Complexation and drug action, crystalline structures of complexes and thermodynamic treatment of stability constants. UNIT-V 07 Hours pH, buffers and Isotonic solutions: Sorensen's pH scale, pH determination (electrometric and calorimetric), applications of buffers, buffer equation, buffer capacity, buffers in pharmaceutical and biological systems, buffered isotonic solutions. ## BP306P. PHYSICAL PHARMACEUTICS - I (Practical) 4 Hrs/week - 1. Determination the solubility of drug at room temperature - 2. Determination of pKa value by Half Neutralization/ Henderson Hasselbalch equation. - 3. Determination of Partition co-efficient of benzoic acid in benzene and water - 4. Determination of Partition co- efficient of Iodine in CCl4 and water - Determination of % composition of NaCl in a solution using phenol-water system by CST method - 6. Determination of surface tension of given liquids by drop count and dropweight method - 7. Determination of HLB number of a surfactant by saponification method - 8. Determination of Freundlich and Langmuir constants using activated char coal - 9. Determination of critical micellar concentration of surfactants - Determination of stability constant and donor acceptor ratio of PABA-Caffeine complex by solubility method - 11. Determination of stability constant and donor acceptor ratio of Cupric-Glycine complex by pH titration method #### Recommended Books: (Latest Editions) - 1. Physical Pharmacy by Alfred Martin - 2. Experimental Pharmaceutics by Eugene, Parott. - 3. Tutorial Pharmacy by Cooper and Gunn. - 4. Stocklosam J. Pharmaceutical Calculations, Lea & Febiger, Philadelphia. - 5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, MarcelDekkar Inc. - 6. Liberman H.A, Lachman C, Pharmaceutical Dosage forms. Disperse systems, volume 1, 2, 3. Marcel Dekkar Inc. - 7. Physical Pharmaceutics by Ramasamy C and ManavalanR. - 8. Laboratory Manual of Physical Pharmaceutics, C.V.S. Subramanyam, J. Thimma settee - 9. Physical Pharmaceutics by C.V.S. Subramanyam - 10. Test book of Physical Phramacy, by Gaurav Jain & Roop K. Khar ## BP 303 T. PHARMACEUTICAL MICROBIOLOGY (Theory) 45Hours ## Scope: Study of all categories of microorganisims especially for the production of alchol antibiotics, vaccines, vitamins enzymes etc.. Objectives: Upon completion of the subject student shall be able to; - I. Understand methods of identification, cultivation and preservation of various microorganisms - 2. To understand the importance and implementation of sterlization in pharmaceutical processing and industry - 3. Learn sterility testing of pharmaceutical products. - 4. Carried out microbiological standardization of Pharmaceuticals. - 5. Understand the cell culture technology and its applications in pharmaceutical industries. #### Course content: Unit I 10 Hours Introduction, history of microbiology, its branches, scope and its importance. Introduction to Prokaryotes and Eukaryotes Study of ultra-structure and morphological classification of bacteria, nutritional requirements, raw materials used for culture media and physical parameters for growth, growth curve, isolation and preservation methods for pure
cultures, cultivation of anaerobes, quantitative measurement of bacterial growth (total & viable count). Study of different types of phase constrast microscopy, dark field microscopy and electron microscopy. Unit II 10 Hours Identification of bacteria using staining techniques (simple, Gram's &Acid fast staining) and biochemical tests (IMViC). Study of principle, procedure, merits, demerits and applications of physical, chemical gaseous, radiation and mechanical method of sterilization. Evaluation of the efficiency of sterilization methods. 0 Principal Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 79 Equipments employed in large scale sterilization. Sterility indicators. Unit III 10 Hours 07Hours Study of morphology, classification, reproduction/replication and cultivation of Fungi and Viruses. Classification and mode of action of disinfectants Factors influencing disinfection, antiseptics and their evaluation. For bacteriostatic and bactericidal actions Evaluation of bactericidal & Bacteriostatic. Sterility testing of products (solids, liquids, ophthalmic and other sterile products) according to IP, BP and USP. Unit IV 08 Hours Designing of aseptic area, laminar flow equipments; study of different sources of contamination in an aseptic area and methods of prevention, clean area classification. Principles and methods of different microbiological assay. Methods for standardization of antibiotics, vitamins and amino acids. Assessment of a new antibiotic. Unit V Types of spoilage, factors affecting the microbial spoilage of pharmaceutical products, sources and types of microbial contaminants, assessment of microbial contamination and spoilage. Preservation of pharmaceutical products using antimicrobial agents, evaluation of microbial stability of formulations. Growth of animal cells in culture, general procedure for cell culture, Primary, established and transformed cell cultures. Application of cell cultures in pharmaceutical industry and research. ## BP 307P.PHARMACEUTICAL MICROBIOLOGY (Practical) 4 Hrs/week - 1. Introduction and study of different equipments and processing, e.g., B.O.D. incubator, laminar flow, aseptic hood, autoclave, hot air sterilizer, deep freezer, refrigerator, microscopes used in experimental microbiology. - 2. Sterilization of glassware, preparation and sterilization of media. - 3. Sub culturing of bacteria and fungus. Nutrient stabs and slants preparations. - 4. Staining methods- Simple, Grams staining and acid fast staining (Demonstration with practical). - 5. Isolation of pure culture of micro-organisms by multiple streak plate technique and other techniques. - 6. Microbiological assay of antibiotics by cup plate method and other methods - 7. Motility determination by Hanging drop method. - 8. Sterility testing of pharmaceuticals. - 9. Bacteriological analysis of water - 10. Biochemical test. #### Recommended Books (Latest edition) - 1. W.B. Hugo and A.D. Russel: Pharmaceutical Microbiology, Blackwell Scientific publications, Oxford London. - 2. Prescott and Dunn., Industrial Microbiology, 4th edition, CBS Publishers & Distributors, - 3. Pelczar, Chan Kreig, Microbiology, Tata McGraw Hill edn. - 4. Malcolm Harris, Balliere Tindall and Cox: Pharmaceutical Microbiology. - 5. Rose: Industrial Microbiology. - 6. Probisher, Hinsdill et al: Fundamentals of Microbiology, 9th ed. Japan - 7. Cooper and Gunn's: Tutorial Pharmacy, CBS Publisher and Distribution. - 8. Peppler: Microbial Technology. - 9. I.P., B.P., U.S.P.- latest editions. - 10. Ananthnarayan: Text Book of Microbiology, Orient-Longman, Chennai - 11. Edward: Fundamentals of Microbiology. - 12. N.K.Jain: Pharmaceutical Microbiology, Vallabh Prakashan, Delhi - 13. Bergeys manual of systematic bacteriology, Williams and Wilkins- A Waverly company ## BP 304 T. PHARMACEUTICAL ENGINEERING (Theory) 45 Hours Scope: This course is designed to impart a fundamental knowledge on the art and science of various unit operations used in pharmaceutical industry. **Objectives:** Upon completion of the course student shall be able: - 1. To know various unit operations used in Pharmaceutical industries. - 2. To understand the material handling techniques. - 3. To perform various processes involved in pharmaceutical manufacturing process. - 4. To carry out various test to prevent environmental pollution. - 5. To appreciate and comprehend significance of plant lay out design for optimum use of resources. - 6. To appreciate the various preventive methods used for corrosion control in Pharmaceutical industries. #### Course content: **UNIT-I** 10 Hours - Flow of fluids: Types of manometers, Reynolds number and its significance, Bernoulli's theorem and its applications, Energy losses, Orifice meter, Venturimeter, Pitot tube and Rotometer. - Size Reduction: Objectives, Mechanisms & Laws governing size reduction, factors affecting size reduction, principles, construction, working, uses, merits and demerits of Hammer mill, ball mill, fluid energy mill, Edge runner mill & end runner mill. - Size Separation: Objectives, applications & mechanism of size separation, official standards of powders, sieves, size separation Principles, construction, working, uses, merits and demerits of Sieve shaker, cyclone separator, Air separator, Bag filter & elutriation tank. UNIT-II 10 Hours Heat Transfer: Objectives, applications & Heat transfer mechanisms. Fourier's law, Heat transfer by conduction, convection & radiation. Heat interchangers & heat exchangers. 82 - Evaporation: Objectives, applications and factors influencing evaporation, differences between evaporation and other heat process. principles, construction, working, uses, merits and demerits of Steam jacketed kettle, horizontal tube evaporator, climbing film evaporator, forced circulation evaporator, multiple effect evaporator& Economy of multiple effect evaporator. - **Distillation:** Basic Principles and methodology of simple distillation, flash distillation, fractional distillation, distillation under reduced pressure, steam distillation & molecular distillation UNIT- III 08 Hours - **Drying:** Objectives, applications & mechanism of drying process, measurements & applications of Equilibrium Moisture content, rate of drying curve. principles, construction, working, uses, merits and demerits of Tray dryer, drum dryer spray dryer, fluidized bed dryer, vacuum dryer, freeze dryer. - Mixing: Objectives, applications & factors affecting mixing, Difference between solid and liquid mixing, mechanism of solid mixing, liquids mixing and semisolids mixing. Principles, Construction, Working, uses, Merits and Demerits of Double cone blender, twin shell blender, ribbon blender, Sigma blade mixer, planetary mixers, Propellers, Turbines, Paddles & Silverson Emulsifier, UNIT-IV 08 Hours - Filtration: Objectives, applications, Theories & Factors influencing filtration, filter aids, filter medias. Principle, Construction, Working, Uses, Merits and demerits of plate & frame filter, filter leaf, rotary drum filter, Meta filter & Cartridge filter, membrane filters and Seidtz filter. - Centrifugation: Objectives, principle & applications of Centrifugation, principles, construction, working, uses, merits and demerits of Perforated basket centrifuge, Non-perforated basket centrifuge, semi continuous centrifuge & super centrifuge. UNIT- V 07 Hours Materials of pharmaceutical plant construction, Corrosion and its prevention: Factors affecting during materials selected for Pharmaceutical plant construction, Theories of corrosion, types of corrosion and there prevention. Ferrous and nonferrous metals, inorganic and organic non metals, basic of material handling systems. ## Recommended Books: (Latest Editions) - 1. Introduction to chemical engineering Walter L Badger & Julius Banchero, Latest edition. - 2. Solid phase extraction, Principles, techniques and applications by Nigel J.K. Simpson-Latest edition. - 3. Unit operation of chemical engineering Mcabe Smith, Latest edition. - 4. Pharmaceutical engineering principles and practices C.V.S Subrahmanyam et al., Latest edition. - 5. Remington practice of pharmacy- Martin, Latest edition. - 6. Theory and practice of industrial pharmacy by Lachmann., Latest edition. - 7. Physical pharmaceutics- C.V.S Subrahmanyam et al., Latest edition. - 8. Cooper and Gunn's Tutorial pharmacy, S.J. Carter, Latest edition. Principal Principal ## **BP308P - PHARMACEUTICAL ENGINEERING (Practical)** 4 Hours/week - 1. Determination of radiation constant of brass, iron, unpainted and painted glass. - II. Steam distillation To calculate the efficiency of steam distillation. - III. To determine the overall heat transfer coefficient by heat exchanger. - IV. Construction of drying curves (for calcium carbonate and starch). - V. Determination of moisture content and loss on drying. - VI. Determination of humidity of air i) From wet and dry bulb temperatures –use of Dew point method. - VII. Description of Construction working and application of Pharmaceutical Machinery such as rotary tablet machine, fluidized bed coater, fluid energy mill, de humidifier. - VIII. Size analysis by sieving To evaluate size distribution of tablet granulations Construction of various size frequency curves including arithmetic and logarithmic probability plots. - IX. Size reduction: To verify the laws of size reduction using ball mill and determining Kicks, Rittinger's, Bond's coefficients, power requirement and critical speed of Ball Mill. - Demonstration of colloid mill, planetary mixer, fluidized bed dryer, freeze dryer and such othermajor equipment. - XI. Factors affecting Rate of Filtration and Evaporation (Surface area, Concentration and Thickness/ viscosity - XII. To study the effect of time on the Rate of Crystallization. - XIII. To calculate the uniformity Index for given sample by using Double Cone Blender. X. SEMESTER IV ## BP401T. PHARMACEUTICAL ORGANIC CHEMISTRY -III (Theory) 45 Hours **Scope:** This subject imparts
knowledge on stereo-chemical aspects of organic compounds and organic reactions, important named reactions, chemistry of important hetero cyclic compounds. It also emphasizes on medicinal and other uses of organic compounds. Objectives: At the end of the course, the student shall be able to - 1. understand the methods of preparation and properties of organic compounds - 2. explain the stereo chemical aspects of organic compounds and stereo chemical reactions - 3. know the medicinal uses and other applications of organic compounds #### Course Content: Note: To emphasize on definition, types, mechanisms, examples, uses/applications UNIT-I 10 Hours #### Stereo isomerism Optical isomerism - Optical activity, enantiomerism, diastereoisomerism, meso compounds Elements of symmetry, chiral and achiral molecules DL system of nomenclature of optical isomers, sequence rules, RS system of nomenclature of optical isomers Reactions of chiral molecules Racemic modification and resolution of racemic mixture. Asymmetric synthesis: partial and absolute UNIT-II 10 Hours Geometrical isomerism Nomenclature of geometrical isomers (Cis Trans, EZ, Syn Anti systems) Methods of determination of configuration of geometrical isomers. Conformational isomerism in Ethane, n-Butane and Cyclohexane. Stereo isomerism in biphenyl compounds (Atropisomerism) and conditions for optical activity. Stereospecific and stereoselective reactions **UNIT-III** 10 Hours Principal Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 ## Heterocyclic compounds: Nomenclature and classification Synthesis, reactions and medicinal uses of following compounds/derivatives Pyrrole, Furan, and Thiophene Relative aromaticity and reactivity of Pyrrole, Furan and Thiophene UNIT-IV 8 Hours Synthesis, reactions and medicinal uses of following compounds/derivatives Pyrazole, Imidazole, Oxazole and Thiazole. Pyridine, Quinoline, Isoquinoline, Acridine and Indole. Basicity of pyridine Synthesis and medicinal uses of Pyrimidine, Purine, azepines and their derivatives UNIT-V 07 Hours #### Reactions of synthetic importance Metal hydride reduction (NaBH₄ and LiAlH₄), Clemmensen reduction, Birch reduction, Wolff Kishner reduction. Oppenauer-oxidation and Dakin reaction. Beckmanns rearrangement and Schmidt rearrangement. Claisen-Schmidt condensation #### Recommended Books (Latest Editions) - 1. Organic chemistry by I.L. Finar, Volume-I & II. - 2. A text book of organic chemistry Arun Bahl, B.S. Bahl. - 3. Heterocyclic Chemistry by Raj K. Bansal - 4. Organic Chemistry by Morrison and Boyd - 5. Heterocyclic Chemistry by T.L. Gilchrist ## BP402T. MEDICINAL CHEMISTRY - I (Theory) 45 Hours Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class. Objectives: Upon completion of the course the student shall be able to - 1. understand the chemistry of drugs with respect to their pharmacological activity - 2. understand the drug metabolic pathways, adverse effect and therapeutic value of - 3. know the Structural Activity Relationship (SAR) of different class of drugs - 4. write the chemical synthesis of some drugs #### Course Content: Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*) UNIT- I 10 Hours **Introduction to Medicinal Chemistry** History and development of medicinal chemistry Physicochemical properties in relation to biological action Ionization, Solubility, Partition Coefficient, Hydrogen bonding, Protein binding, Chelation, Bioisosterism, Optical and Geometrical isomerism. #### Drug metabolism Drug metabolism principles- Phase I and Phase II. Factors affecting drug metabolism including stereo chemical aspects. UNIT-II 10 Hours Drugs acting on Autonomic Nervous System #### Adrenergic Neurotransmitters: Biosynthesis and catabolism of catecholamine. Adrenergic receptors (Alpha & Beta) and their distribution. Sympathomimetic agents: SAR of Sympathomimetic agents Direct acting: Nor-epinephrine, Epinephrine, Phenylephrine*, Dopamine, Principal Vaagdevi College of Pharmacy Hanamkonda, Warandal-506 001 89 Methyldopa, Clonidine, Dobutamine, Isoproterenol, Terbutaline, Salbutamol*, Bitolterol, Naphazoline, Oxymetazoline and Xylometazoline. - Indirect acting agents: Hydroxyamphetamine, Pseudoephedrine, Propylhexedrine. - Agents with mixed mechanism: Ephedrine, Metaraminol. ## Adrenergic Antagonists: Alpha adrenergic blockers: Tolazoline*, Phentolamine. Phenoxybenzamine, Prazosin, Dihydroergotamine, Methysergide. Beta adrenergic blockers: SAR of beta blockers, Propranolol*, Metibranolol, Atenolol, Betazolol, Bisoprolol, Esmolol, Metoprolol, Labetolol, Carvedilol. UNIT-III 10 Hours ## Cholinergic neurotransmitters: Biosynthesis and catabolism of acetylcholine. Cholinergic receptors (Muscarinic & Nicotinic) and their distribution. Parasympathomimetic agents: SAR of Parasympathomimetic agents **Direct acting agents:** Acetylcholine, Carbachol*, Bethanechol, Methacholine, Pilocarpine. Indirect acting/ Cholinesterase inhibitors (Reversible & Irreversible): Physostigmine, Neostigmine*, Pyridostigmine, Edrophonium chloride, Tacrine hydrochloride, Ambenonium chloride, Isofluorphate, Echothiophate iodide, Parathione, Malathion. Cholinesterase reactivator: Pralidoxime chloride. Cholinergic Blocking agents: SAR of cholinolytic agents Solanaceous alkaloids and analogues: Atropine sulphate, Hyoscyamine sulphate, Scopolamine hydrobromide, Homatropine hydrobromide, lpratropium bromide*. Synthetic cholinergic blocking agents: Tropicamide, Cyclopentolate hydrochloride, Clidinium bromide, Dicyclomine hydrochloride*, Glycopyrrolate, Methantheline bromide, Propantheline bromide, Benztropine mesylate, Orphenadrine citrate, Biperidine hydrochloride, Procyclidine hydrochloride*, Tridihexethyl chloride, Isopropamide iodide, Ethopropazine hydrochloride. UNIT- IV 08 Hours **Drugs acting on Central Nervous System** ## A. Sedatives and Hypnotics: **Benzodiazepines:** SAR of Benzodiazepines, Chlordiazepoxide, Diazepam*, Oxazepam, Chlorazepate, Lorazepam, Alprazolam, Zolpidem Barbiturtes: SAR of barbiturates, Barbital*, Phenobarbital, Mephobarbital, Amobarbital, Butabarbital, Pentobarbital, Secobarbital #### Miscelleneous: Amides & imides: Glutethmide. Alcohol & their carbamate derivatives: Meprobomate, Ethchlorvynol. Aldehyde & their derivatives: Triclofos sodium, Paraldehyde. ## **B.** Antipsychotics Phenothiazeines: SAR of Phenothiazeines - Promazine hydrochloride, Chlorpromazine hydrochloride*, Triflupromazine, Thioridazine hydrochloride, Piperacetazine hydrochloride, Prochlorperazine maleate, Triflupromazine hydrochloride. Ring Analogues of Phenothiazeines: Chlorprothixene, Thiothixene, Loxapine succinate, Clozapine. Fluro buterophenones: Haloperidol, Droperidol, Risperidone. Beta amino ketones: Molindone hydrochloride. Benzamides: Sulpieride. C. Anticonvulsants: SAR of Anticonvulsants, mechanism of anticonvulsant action Barbiturates: Phenobarbitone, Methabarbital. Hydantoins: Phenytoin*, Mephenytoin, Ethotoin Oxazolidine diones: Trimethadione, Paramethadione Succinimides: Phensuximide, Methsuximide, Ethosuximide* Urea and monoacylureas: Phenacemide, Carbamazepine* Benzodiazepines: Clonazepam Miscellaneous: Primidone, Valproic acid, Gabapentin, Felbamate UNIT – V 07 Hours **Drugs acting on Central Nervous System** Principal Vaagdevi College of Pharmacy 91 #### General anesthetics: **Inhalation anesthetics:** Halothane*, Methoxyflurane, Enflurane, Sevoflurane, Isoflurane, Desflurane. Ultra short acting barbitutrates: Methohexital sodium*, Thiamylal sodium, Thiopental sodium. Dissociative anesthetics: Ketamine hydrochloride.* ## Narcotic and non-narcotic analgesics Morphine and related drugs: SAR of Morphine analogues, Morphine sulphate, Codeine, Meperidine hydrochloride, Anilerdine hydrochloride, Diphenoxylate hydrochloride, Loperamide hydrochloride, Fentanyl citrate*, Methadone hydrochloride*, Propoxyphene hydrochloride, Pentazocine, Levorphanol tartarate. Narcotic antagonists: Nalorphine hydrochloride, Levallorphan tartarate, Naloxone hydrochloride. Anti-inflammatory agents: Sodium salicylate, Aspirin, Mefenamic acid*, Meclofenamate, Indomethacin, Sulindac, Tolmetin, Zomepriac, Diclofenac, Ketorolac, Ibuprofen*, Naproxen, Piroxicam, Phenacetin, Acetaminophen, Antipyrine, Phenylbutazone. #### BP406P. MEDICINAL CHEMISTRY - I (Practical) 4 Hours/Week ## I Preparation of drugs/intermediates - 1 1,3-pyrazole - 2 1,3-oxazole - 3 Benzimidazole - 4 Benztriazole - 5 2,3- diphenyl quinoxaline - 6 Benzocaine - 7 Phenytoin - 8 Phenothiazine - 9 Barbiturate ## II Assay of drugs - Chlorpromazine - 2 Phenobarbitone - 3 Atropine - 4 Ibuprofen - 5 Aspirin - 6 Furosemide ## III Determination of Partition coefficient for any two drugs ## **Recommended Books (Latest Editions)** - 1. Wilson and Giswold's Organic medicinal and Pharmaceutical Chemistry, - 2. Foye's Principles of Medicinal Chemistry. - 3. Burger's Medicinal Chemistry, Vol I to IV. - 4. Introduction to principles of drug design- Smith and Williams. - 5. Remington's Pharmaceutical Sciences. - 6. Martindale's extra pharmacopoeia. - 7. Organic Chemistry by I.L. Finar, Vol. II. - 8. The Organic Chemistry of Drug Synthesis by Lednicer, Vol. 1-5. - 9. Indian Pharmacopoeia. - 10. Text book of practical organic chemistry- A.I. Vogel. ## BP 403 T. PHYSICAL PHARMACEUTICS-II (Theory) 45Hours Scope: The course deals with the various physica and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the
student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms. Objectives: Upon the completion of the course student shall be able to - Understand various physicochemical properties of drug molecules in the designing the dosage forms - 2. Know the principles of chemical kinetics & to use them for stability testing nad determination of expiry date of formulations - 3. Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms. #### Course Content: #### UNIT-I 07 Hours Colloidal dispersions: Classification of dispersed systems & their general characteristics, size & shapes of colloidal particles, classification of colloids & comparative account of their general properties. Optical, kinetic & electrical properties. Effect of electrolytes, coacervation, peptization& protective action. UNIT-II 10 Hours Rheology: Newtonian systems, law of flow, kinematic viscosity, effect of temperature, non-Newtonian systems, pseudoplastic, dilatant, plastic, thixotropy, thixotropy in formulation, determination of viscosity, capillary, falling Sphere, rotational viscometers **Deformation of solids:** Plastic and elastic deformation, Heckel equation, Stress, Strain, Elastic Modulus UNIT-III 10 Hours Coarse dispersion: Suspension, interfacial properties of suspended particles, settling in suspensions, formulation of flocculated and deflocculated suspensions. Emulsions and theories of emulsification, microemulsion and multiple emulsions; Stability of emulsions, preservation of emulsions, rheological properties of emulsions and emulsion formulation by HLB method. College of Passing and UNIT-IV 10Hours Micromeretics: Particle size and distribution, mean particle size, number and weight distribution, particle number, methods for determining particle size by different methods, counting and separation method, particle shape, specific surface, methods for determining surface area, permeability, adsorption, derived properties of powders, porosity, packing arrangement, densities, bulkiness & flow properties. UNIT-V 10 Hours Drug stability: Reaction kinetics: zero, pseudo-zero, first & second order, units of basic rate constants, determination of reaction order. Physical and chemical factors influencing the chemical degradation of pharmaceutical product: temperature, solvent, ionic strength, dielectric constant, specific & general acid base catalysis, Simple numerical problems. Stabilization of medicinal agents against common reactions like hydrolysis & oxidation. Accelerated stability testing in expiration dating of pharmaceutical dosage forms. Photolytic degradation and its prevention ## BP 407P. PHYSICAL PHARMACEUTICS- II (Practical) 3 Hrs/week - 1. Determination of particle size, particle size distribution using sieving method - 2. Determination of particle size, particle size distribution using Microscopic method - 3. Determination of bulk density, true density and porosity - 4. Determine the angle of repose and influence of lubricant on angle of repose - 5. Determination of viscosity of liquid using Ostwald's viscometer - 6. Determination sedimentation volume with effect of different suspending agent - 7. Determination sedimentation volume with effect of different concentration of single suspending agent - 8. Determination of viscosity of semisolid by using Brookfield viscometer - 9. Determination of reaction rate constant first order. - 10. Determination of reaction rate constant second order - 11. Accelerated stability studies #### Recommended Books: (Latest Editions) - 1. Physical Pharmacy by Alfred Martin, Sixthedition - 2. Experimental pharmaceutics by Eugene, Parott. - 3. Tutorial pharmacy by Cooper and Gunn. - 4. Stocklosam J. Pharmaceutical calculations, Lea & Febiger, Philadelphia. - 5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, Marcel Dekkar Inc. - 6. Liberman H.A, Lachman C, Pharmaceutical dosage forms. Disperse systems, volume 1, 2, 3. Marcel Dekkar Inc. - 7. Physical Pharmaceutics by Ramasamy C, and Manavalan R. ## BP 404 T. PHARMACOLOGY-I (Theory) 45 Hrs Scope: The main purpose of the subject is to understand what drugs do to the living organisms and how their effects can be applied to therapeutics. The subject covers the information about the drugs like, mechanism of action, physiological and biochemical effects (pharmacodynamics) as well as absorption, distribution, metabolism and excretion (pharmacokinetics) along with the adverse effects, clinical uses, interactions, doses, contraindications and routes of administration of different classes of drugs. Objectives: Upon completion of this course the student should be able to - 1. Understand the pharmacological actions of different categories of drugs - 2. Explain the mechanism of drug action at organ system/sub cellular/macromolecular levels. - 3. Apply the basic pharmacological knowledge in the prevention and treatment of various diseases. - 4. Observe the effect of drugs on animals by simulated experiments - 5. Appreciate correlation of pharmacology with other bio medical sciences #### **Course Content:** UNIT-I 08 hours - 1. General Pharmacology - a. Introduction to Pharmacology- Definition, historical landmarks and scope of pharmacology, nature and source of drugs, essential drugs concept and routes of drug administration, Agonists, antagonists (competitive and non competitive), spare receptors, addiction, tolerance, dependence, tachyphylaxis, idiosyncrasy, allergy. - b. Pharmacokinetics- Membrane transport, absorption, distribution, metabolism and excretion of drugs. Enzyme induction, enzyme inhibition, kinetics of elimination UNIT-II 12 Hours **General Pharmacology** - a. Pharmacodynamics- Principles and mechanisms of drug action. Receptor theories and classification of receptors, regulation of receptors. drug receptors interactions signal transduction mechanisms, G-protein—coupled receptors, ion channel receptor, transmembrane enzyme linked receptors, transmembrane JAK-STAT binding receptor and receptors that regulate transcription factors, dose response relationship, therapeutic index, combined effects of drugs and factors modifying drug action. - b. Adverse drug reactions. - c. Drug interactions (pharmacokinetic and pharmacodynamic) - d. Drug discovery and clinical evaluation of new drugs -Drug discovery phase, preclinical evaluation phase, clinical trial phase, phases of clinical trials and pharmacovigilance. UNIT-III 10 Hours ## 2. Pharmacology of drugs acting on peripheral nervous system - a. Organization and function of ANS. - b. Neurohumoral transmission, co-transmission and classification of neurotransmitters. - c. Parasympathomimetics, Parasympatholytics, Sympathomimetics, sympatholytics. - d. Neuromuscular blocking agents and skeletal muscle relaxants (peripheral). - e. Local anesthetic agents. - f. Drugs used in myasthenia gravis and glaucoma UNIT-IV 08 Hours - 3. Pharmacology of drugs acting on central nervous system - a. Neurohumoral transmission in the C.N.S.special emphasis on importance of various neurotransmitters like with GABA, Glutamate, Glycine, serotonin, dopamine. - b. General anesthetics and pre-anesthetics. - c. Sedatives, hypnotics and centrally acting muscle relaxants. - d. Anti-epileptics - e. Alcohols and disulfiram UNIT-V 07 Hours - 3. Pharmacology of drugs acting on central nervous system - a. Psychopharmacological agents: Antipsychotics, antidepressants, anti-anxiety agents, anti-manics and hallucinogens. - b. Drugs used in Parkinsons disease and Alzheimer's disease. - c. CNS stimulants and nootropics. - d. Opioid analgesics and antagonists - e. Drug addiction, drug abuse, tolerance and dependence. Principal Vaagdevi College of Pharmacy College of Page 99 Hanamkonda, Warangal-506 001 ## **BP 408 P.PHARMACOLOGY-I (Practical)** 4Hrs/Week - 1. Introduction to experimental pharmacology. - 2. Commonly used instruments in experimental pharmacology. - 3. Study of common laboratory animals. - 4. Maintenance of laboratory animals as per CPCSEA guidelines. - 5. Common laboratory techniques. Blood withdrawal, serum and plasma separation, anesthetics and euthanasia used for animal studies. - 6. Study of different routes of drugs administration in mice/rats. - 7. Study of effect of hepatic microsomal enzyme inducers on the phenobarbitone sleeping time in mice. - 8. Effect of drugs on ciliary motility of frog oesophagus - 9. Effect of drugs on rabbit eye. - 10. Effects of skeletal muscle relaxants using rota-rod apparatus. - 11. Effect of drugs on locomotor activity using actophotometer. - 12. Anticonvulsant effect of drugs by MES and PTZ method. - 13. Study of stereotype and anti-catatonic activity of drugs on rats/mice. - 14. Study of anxiolytic activity of drugs using rats/mice. - 15. Study of local anesthetics by different methods Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos #### Recommended Books (Latest Editions) - 1. Rang H. P., Dale M. M., Ritter J. M., Flower R. J., Rang and Dale's Pharmacology, Churchil Livingstone Elsevier - 2. Katzung B. G., Masters S. B., Trevor A. J., Basic and clinical pharmacology, Tata Mc Graw-Hill - Goodman and Gilman's, The Pharmacological Basis of Therapeutics - 4. Marry Anne K. K., Lloyd Yee Y., Brian K. A., Robbin L.C., Joseph G. B., Wayne A. K., Bradley R.W., Applied Therapeutics, The Clinical use of Drugs, The Point Lippincott Williams & Wilkins - Mycek M.J, Gelnet S.B and Perper M.M. Lippincott's Illustrated Reviews-Pharmacology - K.D.Tripathi. Essentials of Medical Pharmacology, JAYPEE Brothers Medical Publishers (P) Ltd, New Delhi. - 7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher - 8. Modern Pharmacology with clinical Applications, by Charles R.Craig&Robert, - 9. Ghosh MN. Fundamentals of Experimental Pharmacology. Hilton &
Company, Kolkata. - 10. Kulkarni SK. Handbook of experimental pharmacology. VallabhPrakashan, # BP 405 T.PHARMACOGNOSY AND PHYTOCHEMISTRY I (Theory) 45 Hours **Scope:** The subject involves the fundamentals of Pharmacognosy like scope, classification of crude drugs, their identification and evaluation, phytochemicals present in them and their medicinal properties. Objectives: Upon completion of the course, the student shall be able - 1. to know the techniques in the cultivation and production of crude drugs - 2. to know the crude drugs, their uses and chemical nature - 3. know the evaluation techniques for the herbal drugs - 4. to carry out the microscopic and morphological evaluation of crude drugs #### **Course Content:** UNIT-I 10 Hours Introduction to Pharmacognosy: - (a) Definition, history, scope and development of Pharmacognosy - (b) Sources of Drugs Plants, Animals, Marine & Tissue culture - (c) Organized drugs, unorganized drugs (dried latex, dried juices, dried extracts, gums and mucilages, oleoresins and oleo- gum -resins). Classification of drugs: Alphabetical, morphological, taxonomical, chemical, pharmacological, chemo and sero taxonomical classification of drugs Quality control of Drugs of Natural Origin: Adulteration of drugs of natural origin. Evaluation by organoleptic, microscopic, physical, chemical and biological methods and properties. Quantitative microscopy of crude drugs including lycopodium spore method, leafconstants, camera lucida and diagrams of microscopic objects to scale with camera lucida. UNIT-II 10 Hours Cultivation, Collection, Processing and storage of drugs of natural origin: Cultivation and Collection of drugs of natural origin Factors influencing cultivation of medicinal plants. Plant hormones and their applications. Polyploidy, mutation and hybridization with reference to medicinal plants #### Conservation of medicinal plants UNIT-III 07 Hours Plant tissue culture: Historical development of plant tissue culture, types of cultures, Nutritional requirements, growth and their maintenance. Applications of plant tissue culture in pharmacognosy. Edible vaccines UNIT IV 10 Hours Pharmacognosy in various systems of medicine: Role of Pharmacognosy in allopathy and traditional systems of medicine namely, Ayurveda, Unani, Siddha, Homeopathy and Chinese systems of medicine. Introduction to secondary metabolites: Definition, classification, properties and test for identification of Alkaloids, Glycosides, Flavonoids, Tannins, Volatile oil and Resins UNIT V . 08 Hours Study of biological source, chemical nature and uses of drugs of natural origin containing following drugs **Plant Products:** Fibers - Cotton, Jute, Hemp Hallucinogens, Teratogens, Natural allergens Primary metabolites: General introduction, detailed study with respect to chemistry, sources, preparation, evaluation, preservation, storage, therapeutic used and commercial utility as Pharmaceutical Aids and/or Medicines for the following Primary metabolites: Carbohydrates: Acacia, Agar, Tragacanth, Honey Proteins and Enzymes: Gelatin, casein, proteolytic enzymes (Papain, bromelain, serratiopeptidase, urokinase, streptokinase, pepsin). Lipids(Waxes, fats, fixed oils): Castor oil, Chaulmoogra oil, Wool Fat, Bees Wax Marine Drugs: Novel medicinal agents from marine sources #### BP408 P. PHARMACOGNOSY AND PHYTOCHEMISTRY I (Practical) 4 Hours/Week - 1. Analysis of crude drugs by chemical tests: (i)Tragaccanth (ii) Acacia (iii)Agar (iv) Gelatin (v) starch (vi) Honey (vii) Castor oil - 2. Determination of stomatal number and index - 3. Determination of vein islet number, vein islet termination and paliside ratio. - 4. Determination of size of starch grains, calcium oxalate crystals by eye piece micrometer - 5. Determination of Fiber length and width - 6. Determination of number of starch grains by Lycopodium spore method - 7. Determination of Ash value - 8. Determination of Extractive values of crude drugs - 9. Determination of moisture content of crude drugs - 10. Determination of swelling index and foaming #### Recommended Books: (Latest Editions) - 1. W.C.Evans, Trease and Evans Pharmacognosy, 16th edition, W.B. Sounders & Co., London, 2009. - 2. Tyler, V.E., Brady, L.R. and Robbers, J.E., Pharmacognosy, 9th Edn., Lea and Febiger, Philadelphia, 1988. - 3. Text Book of Pharmacognosy by T.E. Wallis - 4. Mohammad Ali. Pharmacognosy and Phytochemistry, CBS Publishers & Distribution, New Delhi. - 5. Text book of Pharmacognosy by C.K. Kokate, Purohit, Gokhlae (2007), 37th Edition, Nirali Prakashan, New Delhi. - 6. Herbal drug industry by R.D. Choudhary (1996), lst Edn, Eastern Publisher, New Delbi - Essentials of Pharmacognosy, Dr.SH. Ansari, IInd edition, Birla publications. New Delhi, 2007 - 8. Practical Pharmacognosy: C.K. Kokate, Purohit, Gokhlae - 9. Anatomy of Crude Drugs by M.A. Iyengar SEMESTER V A Hamily A Continued to the ## BP501T, MEDICINAL CHEMISTRY - II (Theory) 45 Hours Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class. Objectives: Upon completion of the course the student shall be able to - 1. Understand the chemistry of drugs with respect to their pharmacological activity - Understand the drug metabolic pathways, adverse effect and therapeutic value of drugs - 3. Know the Structural Activity Relationship of different class of drugs - 4. Study the chemical synthesis of selected drugs #### **Course Content:** Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*) UNIT-1 10 Hours Antihistaminic agents: Histamine, receptors and their distribution in the humanbody Diphenhydramine hydrochloride*, Dimenhydrinate, H₁-antagonists: Doxylamines cuccinate, Clemastine fumarate, Diphenylphyraline hydrochloride, Tripelenamine hydrochloride, Chlorcyclizine hydrochloride, Meclizine hydrochloride, Buclizine hydrochloride, Chlorpheniramine maleate, Triprolidine Promethazine hydrochloride*. Phenidamine tartarate, hydrochloride*, Cyproheptadine hydrochloride, Azatidine maleate. Trimeprazine tartrate. Astemizole, Loratadine, Cetirizine, Levocetrazine Cromolyn sodium H2-antagonists: Cimetidine*, Famotidine, Ranitidin. Gastric Proton pump inhibitors: Omeprazole, Lansoprazole, Rabeprazole, Pantoprazole Anti-neoplastic agents: Alkylating agents: Meclorethamine*, Cyclophosphamide, Melphalan, O Pharmac Principal College of Pharmacy 107 Chlorambucil, Busulfan, Thiotepa Antimetabolites: Mercaptopurine*, Thioguanine, Fluorouracil, Floxuridine, Cytarabine, Methotrexate*, Azathioprine Antibiotics: Dactinomycin, Daunorubicin, Doxorubicin, Bleomycin Plant products: Etoposide, Vinblastin sulphate, Vincristin sulphate Miscellaneous: Cisplatin, Mitotane. UNIT - II 10 Hours # Anti-anginal: Vasodilators: Amyl nitrite, Nitroglycerin*, Pentaerythritol tetranitrate, Isosorbide dinitrite*, Dipyridamole. Calcium channel blockers: Verapamil, Bepridil hydrochloride, Diltiazem hydrochloride, Nifedipine, Amlodipine, Felodipine, Nicardipine, Nimodipine. #### Diuretics: Carbonic anhydrase inhibitors: Acetazolamide*, Methazolamide, Dichlorphenamide. Thiazides: Chlorthiazide*, Hydrochlorothiazide, Hydroflumethiazide, Cyclothiazide, Loop diuretics: Furosemide*, Bumetanide, Ethacrynic acid. Potassium sparing Diuretics: Spironolactone, Triamterene, Amiloride. Osmotic Diuretics: Mannitol Anti-hypertensive Agents: Timolol, Captopril, Lisinopril, Enalapril, Benazepril hydrochloride, Quinapril hydrochloride, Methyldopate hydrochloride,* Clonidine hydrochloride, Guanethidine monosulphate, Guanabenz acetate, Sodium nitroprusside, Diazoxide, Minoxidil, Reserpine, Hydralazine hydrochloride. UNIT-III 10 Hours Anti-arrhythmic Drugs: Quinidine sulphate, Procainamide hydrochloride, Disopyramide phosphate*, Phenytoin sodium, Lidocaine hydrochloride, Tocainide hydrochloride, Mexiletine hydrochloride, Lorcainide hydrochloride, Amiodarone, Sotalol. Anti-hyperlipidemic agents: Clofibrate, Lovastatin, Cholesteramine and Cholestipol Coagulant & Anticoagulants: Menadione, Acetomenadione, Warfarin*, Anisindione, clopidogrel **Drugs used in Congestive Heart Failure:** Digoxin, Digitoxin, Nesiritide, Bosentan, Tezosentan. Vaagdevi College of Pharmacy 108 The second of th 109 UNIT-IV 08 Hours # Drugs acting on Endocrine system Nomenclature, Stereochemistry and metabolism of steroids Sex hormones: Testosterone, Nandralone, Progestrones, Oestriol, Oestradiol, Oestrione, Diethyl stilbestrol. Drugs for erectile dysfunction: Sildenafil, Tadalafil. Oral contraceptives: Mifepristone, Norgestril, Levonorgestrol Corticosteroids: Cortisone, Hydrocortisone, Prednisolone, Betamethasone, Dexamethasone Thyroid and antithyroid drugs: L-Thyroxine, L-Thyronine, Propylthiouracil, Methimazole. UNIT - V 07 Hours # Antidiabetic agents: Insulin and its preparations Sulfonyl ureas: Tolbutamide*, Chlorpropamide, Glipizide, Glimepiride. Biguanides: Metformin. Thiazolidinediones: Pioglitazone, Rosiglitazone. Meglitinides: Repaglinide, Nateglinide. Glucosidase inhibitors: Acrabose, Voglibose. Local Anesthetics: SAR of Local anesthetics Benzoic Acid derivatives; Cocaine, Hexylcaine, Meprylcaine, Cyclomethycaine, Piperocaine. Amino Benzoic acid derivatives: Benzocaine*, Butamben, Procaine*, Butacaine, Propoxycaine, Tetracaine, Benoxinate. Lidocaine/Anilide derivatives: Lignocaine, Mepivacaine, Prilocaine, Etidocaine. Miscellaneous: Phenacaine, Diperodon, Dibucaine.* #### Recommended Books (Latest Editions) - 1. Wilson and Giswold's Organic medicinal and Pharmaceutical Chemistry, - 2. Foye's Principles of Medicinal Chemistry.
- 3. Burger's Medicinal Chemistry, Vol I to IV. - 4. Introduction to principles of drug design- Smith and Williams. - 5. Remington's Pharmaceutical Sciences. - 6. Martindale's extra pharmacopoeia. - 7. Organic Chemistry by I.L. Finar, Vol. II. - 8. The Organic Chemistry of Drug Synthesis by Lednicer, Vol. 1to 5. - 9. Indian Pharmacopoeia. - 10. Text book of practical organic chemistry- A.I. Vogel. Pagimacy & College of the # BP 502 T. Industrial Pharmacyl (Theory) 45 Hours Scope: Course enables the student to understand and appreciate the influence of pharmaceutical additives and various pharmaceutical dosage forms on the performance of the drug product. Objectives: Upon completion of the course the student shall be able to - 1. Know the various pharmaceutical dosage forms and their manufacturing techniques. - 2. Know various considerations in development of pharmaceutical dosage forms - 3. Formulate solid, liquid and semisolid dosage forms and evaluate them for their quality #### Course content: 3 hours/ week UNIT-I 07 Hours Preformulation Studies: Introduction to preformulation, goals and objectives, study of physicochemical characteristics of drug substances. - a. Physical properties: Physical form (crystal & amorphous), particle size, shape, flow properties, solubility profile (pKa, pH, partition coefficient), polymorphism - b. Chemical Properties: Hydrolysis, oxidation, reduction, racemisation, polymerization BCS classification of drugs & its significant Application of preformulation considerations in the development of solid, liquid oral and parenteral dosage forms and its impact on stability of dosage forms. 10 Hours **UNIT-II** #### Tablets: - Introduction, ideal characteristics of tablets, classification of tablets. Excipients, Formulation of tablets, granulation methods, compression and processing problems. Equipments and tablet tooling. - Tablet coating: Types of coating, coating materials, formulation of coating b. composition, methods of coating, equipment employed and defects in coating. - Quality control tests: In process and finished product tests c. Liquid orals: Formulation and manufacturing consideration of syrups and elixirs suspensions and emulsions; Filling and packaging; evaluation of liquid orals official in pharmacopoeia Principal UNIT-III 08 Hours # Capsules: a. Hard gelatin capsules: Introduction, Production of hard gelatin capsule shells. size of capsules, Filling, finishing and special techniques of formulation of hard gelatin capsules, manufacturing defects. In process and final product quality control tests for capsules. b. Soft gelatin capsules: Nature of shell and capsule content, size of capsules, importance of base adsorption and minim/gram factors, production, in process and final product quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications. Pellets: Introduction, formulation requirements, pelletization process, equipments for manufacture of pellets UNIT-IV 10 Hours #### **Parenteral Products:** - a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity - b. Production procedure, production facilities and controls, aseptic processing - c. Formulation of injections, sterile powders, large volume parenterals and lyophilized products. - d. Containers and closures selection, filling and sealing of ampoules, vials and infusion fluids. Quality control tests of parenteral products. Ophthalmic Preparations: Introduction, formulation considerations; formulation of eye drops, eye ointments and eye lotions; methods of preparation; labeling, containers; evaluation of ophthalmic preparations UNIT-V 10 Hours Cosmetics: Formulation and preparation of the following cosmetic preparations: lipsticks, shampoos, cold cream and vanishing cream, tooth pastes, hair dyes and sunscreens. Pharmaceutical Aerosols: Definition, propellants, containers, valves, types of aerosol systems; formulation and manufacture of aerosols; Evaluation of aerosols; Quality control and stability studies. Packaging Materials Science: Materials used for packaging of pharmaceutical products, factors influencing choice of containers, legal and official requirements for containers, stability aspects of packaging materials, quality control tests. Principal Vaagdevi College of Pharmacy 113 # BP 506 P. Industrial Pharmacyl (Practical) 4 Honrs/week - 1. Preformulation studies on paracetamol/asparin/or any other drug - 2. Preparation and evaluation of Paracetamol tablets - 3. Preparation and evaluation of Aspirin tablets - 4. Coating of tablets- film coating of tables/granules - 5. Preparation and evaluation of Tetracycline capsules - 6. Preparation of Calcium Gluconate injection - 7. Preparation of Ascorbic Acid injection - 8. Oulaity control test of (as per IP) marketed tablets and capsules - 9. Preparation of Eye drops/ and Eye ointments - 10. Preparation of Creams (cold / vanishing cream) - 11. Evaluation of Glass containers (as per IP) # **Recommended Books: (Latest Editions)** - 1. Pharmaceutical dosage forms Tablets, volume 1 -3 by H.A. Liberman, Leon Lachman &J.B.Schwartz - 2. Pharmaceutical dosage form Parenteral medication vol- 1&2 by Liberman & Lachman - 3. Pharmaceutical dosage form disperse system VOL-1 by Liberman & Lachman - 4. Modern Pharmaceutics by Gilbert S. Banker & C.T. Rhodes, 3rd Edition - 5. Remington: The Science and Practice of Pharmacy, 20th edition Pharmaceutical Science (RPS) - 6. Theory and Practice of Industrial Pharmacy by Liberman & Lachman - 7. Pharmaceutics- The science of dosage form design by M.E.Aulton, Churchill livingstone, Latest edition - Introduction to Pharmaceutical Dosage Forms by H. C.Ansel, Lea & Febiger, Philadelphia, 5thedition, 2005 - Drug stability Principles and practice by Cartensen & C.J. Rhodes, 3rd Edition, Marcel Dekker Series, Vol 107. # BP503.T. PHARMACOLOGY-II (Theory) 45 Hours **Scope:** This subject is intended to impart the fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and contraindications) of drugs acting on different systems of body and in addition, emphasis on the basic concepts of bioassay. Objectives: Upon completion of this course the student should be able to - 1. Understand the mechanism of drug action and its relevance in the treatment of different diseases - 2. Demonstrate isolation of different organs/tissues from the laboratory animals by simulated experiments - 3. Demonstrate the various receptor actions using isolated tissue preparation - 4. Appreciate correlation of pharmacology with related medical sciences #### **Course Content:** UNIT-I 10hours - 1. Pharmacology of drugs acting on cardio vascular system - a. Introduction to hemodynamic and electrophysiology of heart. - b. Drugs used in congestive heart failure - c. Anti-hypertensive drugs. - d. Anti-anginal drugs. - e. Anti-arrhythmic drugs. - f. Anti-hyperlipidemic drugs. UNIT-II 10hours - 1. Pharmacology of drugs acting on cardio vascular system - a. Drug used in the therapy of shock. - b. Hematinics, coagulants and anticoagulants. - c. Fibrinolytics and anti-platelet drugs - d. Plasma volume expanders - 2. Pharmacology of drugs acting on urinary system - a. Diuretics - b. Anti-diuretics. UNIT-III 10hours - 3. Autocoids and related drugs - a. Introduction to autacoids and classification - b. Histamine, 5-HT and their antagonists. - c. Prostaglandins, Thromboxanes and Leukotrienes. - d. Angiotensin, Bradykinin and Substance P. - e. Non-steroidal anti-inflammatory agents - f. Anti-gout drugs - g. Antirheumatic drugs UNIT-IV 08hours # 5. Pharmacology of drugs acting on endocrine system - a. Basic concepts in endocrine pharmacology. - b. Anterior Pituitary hormones- analogues and their inhibitors. - c. Thyroid hormones- analogues and their inhibitors. - d. Hormones regulating plasma calcium level- Parathormone, Calcitonin and Vitamin-D. - d. Insulin. Oral Hypoglycemic agents and glucagon. - e. ACTH and corticosteroids. UNIT-V 07hours # 5. Pharmacology of drugs acting on endocrine system - a. Androgens and Anabolic steroids. - b. Estrogens, progesterone and oral contraceptives. - c. Drugs acting on the uterus. ## 6. Bioassay - a. Principles and applications of bioassay. - b. Types of bioassay - c. Bioassay of insulin, oxytocin, vasopressin, ACTH,d-tubocurarine,digitalis, histamine and 5-HT 2 Vaagdevi College of Dh Hanamkonda, M ## BP 507 P. PHARMACOLOGY-II (Practical) 4Hrs/Week - 1. Introduction to in-vitro pharmacology and physiological salt solutions. - 2. Effect of drugs on isolated frog heart. - 3. Effect of drugs on blood pressure and heart rate of dog. - 4. Study of diuretic activity of drugs using rats/mice. - 5. DRC of acetylcholine using frog rectus abdominis muscle. - 6. Effect of physostigmine and atropine on DRC of acetylcholine using frogrectus abdominis muscle and rat ileum respectively. - 7. Bioassay of histamine using guinea pig ileum by matching method. - 8. Bioassay of oxytocin using rat uterine horn by interpolation method. - 9. Bioassay of serotonin using rat fundus strip by three point bioassay. - 10. Bioassay of acetylcholine using rat ileum/colon by four point bioassay. - 11. Determination of PA₂ value of prazosin using rat anococcygeus muscle (by Schilds plot method). - 12. Determination of PD2 value using guinea pig ileum. - 13. Effect of spasmogens and spasmolytics using rabbit jejunum. - 14. Anti-inflammatory activity of drugs using carrageenan induced paw-edema model. - 15. Analgesic activity of drug using central and peripheral methods Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos #### Recommended Books (Latest Editions) - 1. Rang H. P., Dale M. M., Ritter J. M., Flower R. J., Rang and Dale's Pharmacology, Churchil Livingstone Elsevier - Katzung B. G., Masters S. B.,
Trevor A. J., Basic and clinical pharmacology, TataMc Graw-Hill. - 3. Goodman and Gilman's, The Pharmacological Basis of Therapeutics - Marry Anne K. K., Lloyd Yee Y., Brian K. A., Robbin L.C., Joseph G. B., Wayne A. K., Bradley R.W., Applied Therapeutics, The Clinical use of Drugs, The Point Lippincott Williams & Wilkins. - 5. Mycek M.J, Gelnet S.B and Perper M.M. Lippincott's Illustrated Reviews-Pharmacology. - 6. K.D.Tripathi. Essentials of Medical Pharmacology, , JAYPEE Brothers Medical Publishers (P) Ltd, New Delhi. - 7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher - 8. Modern Pharmacology with clinical Applications, by Charles R.Craig& Robert. - Ghosh MN. Fundamentals of Experimental Pharmacology. Hilton & Company, Kolkata. - 10. Kulkarni SK. Handbook of experimental pharmacology. Vallabh Prakashan. 118 # BP504 T. PHARMACOGNOSY AND PHYTOCHEMISTRY II (Theory) 45Hours **Scope:** The main purpose of subject is to impart the students the knowledge of how the secondary metabolites are produced in the crude drugs, how to isolate and identify and produce them industrially. Also this subject involves the study of producing the plants and phytochemicals through plant tissue culture, drug interactions and basic principles of traditional system of medicine Objectives: Upon completion of the course, the student shall be able - to know the modern extraction techniques, characterization and identification of the herbal drugs and phytoconstituents - 2. to understand the preparation and development of herbal formulation. - 3. to understand the herbal drug interactions - 4. to carryout isolation and identification of phytoconstituents #### **Course Content:** UNIT-I Metabolic pathways in higher plants and their determination a) Brief study of basic metabolic pathways and formation of different secondary metabolites through these pathways- Shikimic acid pathway, Acetate pathways and Amino acid pathway. b) Study of utilization of radioactive isotopes in the investigation of Biogenetic studies. UNIT-II 14 Hours General introduction, composition, chemistry & chemical classes, biosources, therapeutic uses and commercial applications of following secondary metabolites: Alkaloids: Vinca, Rauwolfia, Belladonna, Opium, Phenylpropanoids and Flavonoids: Lignans, Tea, Ruta Steroids, Cardiac Glycosides & Triterpenoids: Liquorice, Dioscorea, Digitalis Volatile oils: Mentha, Clove, Cinnamon, Fennel, Coriander, Tannins: Catechu, Pterocarpus Resins: Benzoin, Guggul, Ginger, Asafoetida, Myrrh, Colophony Glycosides: Senna, Aloes, Bitter Almond Iridoids, Other terpenoids & Naphthaquinones: Gentian, Artemisia, taxus, carotenoids UNIT-III 06 Hours Isolation, Identification and Analysis of Phytoconstituents - a) Terpenoids: Menthol, Citral, Artemisin - b) Glycosides: Glycyrhetinic acid & Rutin - c) Alkaloids: Atropine, Quinine, Reserpine, Caffeine - d) Resins: Podophyllotoxin, Curcumin UNIT-IV 10 Hours Industrial production, estimation and utilization of the following phytoconstituents: Forskolin, Sennoside, Artemisinin, Diosgenin, Digoxin, Atropine, Podophyllotoxin, Caffeine, Taxol, Vincristine and Vinblastine #### **UNIT V** **Basics of Phytochemistry** Modern methods of extraction, application of latest techniques like Spectroscopy, chromatography and electrophoresis in the isolation, purification and identification of crude drugs. 119 Vaagdevi College of Pharmacy Hanamkonda, Warandal-506 001 8 Hours 7 Hours # BP 508 P. PHARMACOGNOSY AND PHYTOCHEMISTRY II (Practical) 4 Hours/Week - 1. Morphology, histology and powder characteristics & extraction & detection of: Cinchona, Cinnamon, Senna, Clove. Ephedra, Fennel and Coriander - 2. Exercise involving isolation & detection of active principles - a. Caffeine from tea dust. - b. Diosgenin from Dioscorea - c. Atropine from Belladonna - d. Sennosides from Senna - 3. Separation of sugars by Paper chromatography - 4. TLC of herbal extract - 5. Distillation of volatile oils and detection of phytoconstitutents by TLC - 6. Analysis of crude drugs by chemical tests: (i) Asafoetida (ii) Benzoin (iii) Colophony (iv) Aloes (v) Myrrh #### Recommended Books: (Latest Editions) - W.C.Evans, Trease and Evans Pharmacognosy, 16th edition, W.B. Sounders & Co., London, 2009. - Mohammad Ali. Pharmacognosy and Phytochemistry, CBS Publishers & Distribution, New Delhi. - 3. Text book of Pharmacognosy by C.K. Kokate, Purohit, Gokhlae (2007), 37th Edition, Nirali Prakashan, New Delhi. - 4. Herbal drug industry by R.D. Choudhary (1996), 1st Edn, Eastern Publisher, New Delhi. - 5. Essentials of Pharmacognosy, Dr.SH.Ansari, IInd edition, Birla publications, New Delhi, 2007 - 6. Herbal Cosmetics by H.Pande, Asia Pacific Business press, Inc, New Delhi. - 7. A.N. Kalia, Textbook of Industrial Pharmacognosy, CBS Publishers, New Delhi, - 8. R Endress, Plant cell Biotechnology, Springer-Verlag, Berlin, 1994. - 9. Pharmacognosy & Pharmacobiotechnology. James Bobbers, Marilyn KS, VE Tylor. - 10. The formulation and preparation of cosmetic, fragrances and flavours. - 11. Remington's Pharmaceutical sciences. - 12. Text Book of Biotechnology by Vyas and Dixit. - 13. Text Book of Biotechnology by R.C. Dubey. Veagger Co. # BP 505 T. PHARMACEUTICAL JURISPRUDENCE (Theory) 45 Hours **Scope:** This course is designed to impart basic knowledge on important legislations related to the profession of pharmacy in India. Objectives: Upon completion of the course, the student shall be able to understand: - 1. The Pharmaceutical legislations and their implications in the development and marketing of pharmaceuticals. - 2. Various Indian pharmaceutical Acts and Laws - 3. The regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals - 4. The code of ethics during the pharmaceutical practice #### **Course Content:** 10 Hours # UNIT-I Drugs and Cosmetics Act, 1940 and its rules 1945: Objectives, Definitions, Legal definitions of schedules to the Act and Rules Import of drugs - Classes of drugs and cosmetics prohibited from import, Import under license or permit. Offences and penalties. Manufacture of drugs - Prohibition of manufacture and sale of certain drugs, Conditions for grant of license and conditions of license for manufacture of drugs, Manufacture of drugs for test, examination and analysis, manufacture of new drug, loan license and repacking license. UNIT-II 10 Hours # Drugs and Cosmetics Act, 1940 and its rules 1945. Detailed study of Schedule G, H, M, N, P,T,U, V, X, Y, Part XII B, Sch F & DMR (OA) Sale of Drugs - Wholesale, Retail sale and Restricted license. Offences and penalties Labeling & Packing of drugs- General labeling requirements and specimen labels for drugs and cosmetics, List of permitted colors. Offences and penalties. Administration of the Act and Rules – Drugs Technical Advisory Board, Central drugs Laboratory, Drugs Consultative Committee, Government drug analysts, Licensing authorities, controlling authorities, Drugs Inspectors UNIT-III 10 Hours Pharmacy Act -1948: Objectives, Definitions, Pharmacy Council of India; its constitution and functions, Education Regulations, State and Joint state pharmacy councils; constitution and functions, Registration of Pharmacists, Offences and #### **Penalties** - Medicinal and Toilet Preparation Act -1955: Objectives, Definitions, Licensing, Manufacture In bond and Outside bond, Export of alcoholic preparations, Manufacture of Ayurvedic, Homeopathic, Patent & Proprietary Preparations. Offences and Penalties. - Narcotic Drugs and Psychotropic substances Act-1985 and Rules: Objectives, Definitions, Authorities and Officers, Constitution and Functions of narcotic & Psychotropic Consultative Committee, National Fund for Controlling the Drug Abuse, Prohibition, Control and Regulation, opium poppy cultivation and production of poppy straw, manufacture, sale and export of opium, Offences and Penalties UNIT-IV 08 Hours - Study of Salient Features of Drugs and Magic Remedies Act and its rules: Objectives, Definitions, Prohibition of certain advertisements, Classes of Exempted advertisements, Offences and Penalties - Prevention of Cruelty to animals Act-1960: Objectives, Definitions, Institutional Animal Ethics Committee, CPCSEA guidelines for Breeding and Stocking of Animals, Performance of Experiments, Transfer and acquisition of animals for experiment, Records, Power to suspend or revoke registration, Offences and Penalties - National Pharmaceutical Pricing Authority: Drugs Price Control Order (DPCO)-2013. Objectives, Definitions, Sale prices of bulk drugs, Retail price of formulations, Retail price and ceiling price of scheduled formulations, National List of Essential Medicines (NLEM) UNIT-V 07 Hours - Pharmaceutical Legislations A brief review, Introduction, Study of drugs enquiry committee, Health survey and development committee, Hathi committee and Mudaliar committee - Code of Pharmaceutical ethics D efinition, Pharmacist in relation to his job, trade, medical profession and his profession, Pharmacist's oath - Medical Termination of Pregnancy Act - Right to Information Act - Introduction to Intellectual Property Rights (IPR) Recommended books: (Latest Edition) 1. Forensic Pharmacy by B. Suresh - 2. Text book of Forensic Pharmacy by B.M. Mithal - 3. Hand book of drug law-by M.L. Mehra - 4. A text book of Forensic Pharmacy by N.K. Jain - 5. Drugs and Cosmetics Act/Rules by Govt. of India publications. - 6. Medicinal and Toilet preparations act 1955 by Govt. of India publications. - 7. Narcotic drugs and psychotropic substances act by Govt. of India publications - 8. Drugs and Magic Remedies act by Govt. of India publication - 9. Bare Acts of the said laws published by Government. Reference books (Theory) SEMESTER VI # BP601T. MEDICINAL CHEMISTRY - III (Theory) 45 Hours Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasis on modern
techniques of rational drug design like quantitative structure activity relationship (QSAR), Prodrug concept, combinatorial chemistry and Computer aided drug design (CADD). The subject also emphasizes on the chemistry, mechanism of action, metabolism, adverse effects, Structure Activity Relationships (SAR), therapeutic uses and synthesis of important drugs. Objectives: Upon completion of the course student shall be able to - 1. Understand the importance of drug design and different techniques of drug design. - 2. Understand the chemistry of drugs with respect to their biological activity. - 3. Know the metabolism, adverse effects and therapeutic value of drugs. - 4. Know the importance of SAR of drugs. #### Course Content: Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted by (*) UNIT-I 10 Hours #### **Antibiotics** Historical background, Nomenclature, Stereochemistry, Structure activity relationship, Chemical degradation classification and important products of the following classes. **β-Lactam antibiotics:** Penicillin, Cepholosporins, β- Lactamase inhibitors, Monobactams Aminoglycosides: Streptomycin, Neomycin, Kanamycin **Tetracyclines:** Tetracycline,Oxytetracycline, Chlortetracycline, Minocycline, Doxycycline UNIT - II 10 Hours #### **Antibiotics** Historical background, Nomenclature, Stereochemistry, Structure activity relationship, Chemical degradation classification and important products of the following classes. Macrolide: Erythromycin Clarithromycin, Azithromycin. Miscellaneous: Chloramphenicol*, Clindamycin. Prodrugs: Basic concepts and application of prodrugs design. Antimalarials: Etiology of malaria. **Quinolines:** SAR, Quinine sulphate, Chloroquine*, Amodiaquine, Primaquine phosphate, Pamaquine*, Quinacrine hydrochloride, Mefloquine. Biguanides and dihydro triazines: Cycloguanil pamoate, Proguanil. Miscellaneous: Pyrimethamine, Artesunete, Artemether, Atovoquone. #### UNIT - III 10 Hours # Anti-tubercular Agents Synthetic anti tubercular agents: Isoniozid*, Ethionamide, Ethambutol, Pyrazinamide, Para amino salicylic acid.* Anti tubercular antibiotics: Rifampicin, Rifabutin, Cycloserine Streptomycine, Capreomycin sulphate. # Urinary tract anti-infective agents Quinolones: SAR of quinolones, Nalidixic Acid, Norfloxacin, Enoxacin, Ciprofloxacin*, Ofloxacin, Lomefloxacin, Sparfloxacin, Gatifloxacin, Moxifloxacin Miscellaneous: Furazolidine, Nitrofurantoin*, Methanamine. #### Antiviral agents: Amantadine hydrochloride, Rimantadine hydrochloride, Idoxuridine trifluoride, Acyclovir*, Gancyclovir, Zidovudine, Didanosine, Zalcitabine, Lamivudine, Loviride, Delavirding, Ribavirin, Saquinavir, Indinavir, Ritonavir. #### UNIT - IV 08 Hours #### Antifungal agents: Antifungal antibiotics: Amphotericin-B, Nystatin, Natamycin, Griseofulvin. Synthetic Antifungal agents: Clotrimazole, Econazole, Butoconazole, Oxiconazole Tioconozole, Miconazole*, Ketoconazole, Terconazole, Itraconazole, Fluconazole, Naftifine hydrochloride, Tolnaftate*. Anti-protozoal Agents: Metronidazole*, Tinidazole, Ornidazole, Diloxanide, Iodoquinol, Pentamidine Isethionate, Atovaquone, Eflornithine. Anthelmintics: Diethylcarbamazine citrate*, Thiabendazole, Mebendazole*, Albendazole, Niclosamide, Oxamniquine, Praziquantal, Ivermectin. Vaagdevi College of Pharmany Hanamkonda, Waranda' #### Sulphonamides and Sulfones Historical development, chemistry, classification and SAR of Sulfonamides: Sulphamethizole, Sulfisoxazole, Sulphamethizine, Sulfacetamide*, Sulphapyridine, Sulfamethoxaole*, Sulphadiazine, Mefenide acetate, Sulfasalazine. Folate reductase inhibitors: Trimethoprim*, Cotrimoxazole. Sulfones: Dapsone*. UNIT-V 07 Hours ## Introduction to Drug Design Various approaches used in drug design. Physicochemical parameters used in quantitative structure activity relationship (QSAR) such as partition coefficient, Hammet's electronic parameter, Tafts steric parameter and Hansch analysis. Pharmacophore modeling and docking techniques. **Combinatorial Chemistry:** Concept and applications of combinatorial chemistry: solid phase and solution phase synthesis. # BP607P. MEDICINAL CHEMISTRY- III (Practical) 4 Hours / week # I Preparation of drugs and intermediates - 1 Sulphanilamide - 2 7-Hydroxy, 4-methyl coumarin - 3 Chlorobutanol - 4 Triphenyl imidazole - 5 Tolbutamide - 6 Hexamine # II Assay of drugs - Isonicotinic acid hydrazide - 2 Chloroquine - 3 Metronidazole - 4 Dapsone - 5 Chlorpheniramine maleate - 6 Benzyl penicillin - III Preparation of medicinally important compounds or intermediates by Microwave irradiation technique - IV Drawing structures and reactions using chem draw® - V Determination of physicochemical properties such as logP, clogP, MR, Molecular weight, Hydrogen bond donors and acceptors for class of drugs course content using drug design software Drug likeliness screening (Lipinskies RO5) # **Recommended Books (Latest Editions)** - 1. Wilson and Giswold's Organic medicinal and Pharmaceutical Chemistry. - 2. Foye's Principles of Medicinal Chemistry. - 3. Burger's Medicinal Chemistry, Vol I to IV. - 4. Introduction to principles of drug design- Smith and Williams. - 5. Remington's Pharmaceutical Sciences. - 6. Martindale's extra pharmacopoeia. - 7. Organic Chemistry by I.L. Finar, Vol. II. - 8. The Organic Chemistry of Drug Synthesis by Lednicer, Vol. 1-5. - 9. Indian Pharmacopoeia. - 10. Text book of practical organic chemistry- A.I. Vogel. # BP602 T. PHARMACOLOGY-III (Theory) 45 Hours Scope: This subject is intended to impart the fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and contraindications) of drugs acting on respiratory and gastrointestinal system, infectious diseases, immuno-pharmacology and in addition, emphasis on the principles of toxicology and chronopharmacology. Objectives: Upon completion of this course the student should be able to: - 1. understand the mechanism of drug action and its relevance in the treatment of different infectious diseases - 2. comprehend the principles of toxicology and treatment of various poisoningsand - 3. appreciate correlation of pharmacology with related medical sciences. #### **Course Content:** UNIT-I 10hours 1. Pharmacology of drugs acting on Respiratory system - a. Anti -asthmatic drugs - b. Drugs used in the management of COPD - c. Expectorants and antitussives - d. Nasal decongestants - e. Respiratory stimulants 2. Pharmacology of drugs acting on the Gastrointestinal Tract - a. Antiulcer agents. - b. Drugs for constipation and diarrhoea. - c. Appetite stimulants and suppressants. - d. Digestants and carminatives. - e. Emetics and anti-emetics. UNIT-II 10hours 3. Chemotherapy - a. General principles of chemotherapy. - b. Sulfonamides and cotrimoxazole. - c. Antibiotics- Penicillins, cephalosporins, chloramphenicol, macrolides, quinolones and fluoroquinolins, tetracycline and aminoglycosides UNIT-III 10hours 3. Chemotherapy - a. Antitubercular agents - b. Antileprotic agents - c. Antifungal agents - d. Antiviral drugs - e.Anthelmintics - f. Antimalarial drugs - g. Antiamoebic agents #### **UNIT-IV** 08hours ## 3. Chemotherapy - 1. Urinary tract infections and sexually transmitted diseases. - m. Chemotherapy of malignancy. # 4. Immunopharmacology - a. Immunostimulants - b. Immunosuppressant Protein drugs, monoclonal antibodies, target drugs to antigen, biosimilars ## **UNIT-V** 07hours # 5. Principles of toxicology - a. Definition and basic knowledge of acute, subacute and chronic toxicity. - b. Definition and basic knowledge of genotoxicity, carcinogenicity, teratogenicity and mutagenicity - c. General principles of treatment of poisoning. - d. Clinical symptoms and management of barbiturates, morphine, organophosphorus compound and lead, mercury and arsenic poisoning. #### 6. Chronopharmacology - a. Definition of rhythm and cycles. - b. Biological clock and their significance leading to chronotherapy. See of Pharmace ### BP 608 P. PHARMACOLOGY-III (Practical) 4Hrs/Week - 1. Dose calculation in pharmacological experiments - 2. Antiallergic activity by mast cell stabilization assay - 3. Study of anti-ulcer activity of a drug using pylorus ligand (SHAY) rat model and NSAIDS induced ulcer model. - 4. Study of effect of drugs on gastrointestinal motility - 5. Effect of agonist and antagonists on guinea pig ileum - 6. Estimation of serum biochemical parameters by using semi-autoanalyser - 7. Effect of saline purgative on frog intestine - 8. Insulin hypoglycemic effect in rabbit - 9. Test for pyrogens (rabbit method) - 10. Determination of acute oral toxicity (LD50) of a drug from a given data - 11. Determination of acute skin irritation / corrosion of a test substance - 12. Determination of acute eye irritation / corrosion of a test substance - 13. Calculation of pharmacokinetic parameters from a given data - 14. Biostatistics methods in experimental pharmacology(student's t test, ANOVA) - Biostatistics methods in experimental pharmacology (Chi square test, Wilcoxon Signed Rank test) - *Experiments are demonstrated by simulated experiments/videos #### **Recommended Books (Latest Editions)** - 1. Rang H. P., Dale M. M., Ritter J. M., Flower R. J., Rang and Dale's Pharmacology, Churchil Livingstone Elsevier - 2. Katzung B. G., Masters S. B., Trevor A. J., Basic and clinical pharmacology, Tata Mc Graw-Hill - 3. Goodman and Gilman's, The Pharmacological Basis of Therapeutics - 4. Marry Anne K. K., Lloyd Yee Y., Brian K. A., Robbin L.C., Joseph G. B., Wayne A. K., Bradley R.W., Applied Therapeutics, The Clinical use of Drugs. The Point Lippincott Williams & Wilkins - 5. Mycek M.J, Gelnet S.B and Perper M.M. Lippincott's Illustrated Reviews-Pharmacology - 6. K.D.Tripathi. Essentials of Medical
Pharmacology, , JAYPEE Brothers Medical Publishers (P) Ltd, New Delhi. - 7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher Modern Pharmacology with clinical Applications, by Charles R.Craig& Robert, - 8. Ghosh MN. Fundamentals of Experimental Pharmacology. Hilton & Company, Kolkata, - 9. Kulkarni SK. Handbook of experimental pharmacology. VallabhPrakashan, - 10. N.Udupa and P.D. Gupta, Concepts in Chronopharmacology. #### BP 603 T. HERBAL DRUG TECHNOLOGY (Theory) 45 hours Scope: This subject gives the student the knowledge of basic understanding of herbal drug industry, the quality of raw material, guidelines for quality of herbal drugs, herbal cosmetics, natural sweeteners, nutraceutical etc. The subject also emphasizes on Good Manufacturing Practices (GMP), patenting and regulatory issues of herbal drugs Objectives: Upon completion of this course the student should be able to: - understand raw material as source of herbal drugs from cultivation to herbal drug product - 2. know the WHO and ICH guidelines for evaluation of herbal drugs - 3. know the herbal cosmetics, natural sweeteners, nutraceuticals - 4. appreciate patenting of herbal drugs, GMP. #### Course content: UNIT-I Herbs as raw materials 11 Hours Definition of herb, herbal medicine, herbal medicinal product, herbal drug preparation Source of Herbs Selection, identification and authentication of herbal materials Processing of herbal raw material Biodynamic Agriculture Good agricultural practices in cultivation of medicinal plants including Organic farming. Pest and Pest management in medicinal plants: Biopesticides/Bioinsecticides. Indian Systems of Medicine - a) Basic principles involved in Ayurveda, Siddha, Unani and Homeopathy - b) Preparation and standardization of Ayurvedic formulations viz Aristas and Asawas, Ghutika, Churna, Lehya and Bhasma. **UNIT-II** 7 Hours Nutraceuticals General aspects, Market, growth, scope and types of products available in the market. Health benefits and role of Nutraceuticals in ailments like Diabetes, CVS diseases, Cancer, Irritable bowel syndrome and various Gastro intestinal diseases. Study of following herbs as health food: Alfaalfa, Chicory, Ginger, Fenugreek, Garlic, Honey, Amla, Ginseng, Ashwagandha, Spirulina Herbal-Drug and Herb-Food Interactions: General introduction to interaction and classification. Study of following drugs and their possible side effects and interactions: Hypercium, kava-kava, Ginkobiloba, Ginseng, Garlic, Pepper & Ephedra. **UNIT-III** **Herbal Cosmetics** 10 Hours Sources and description of raw materials of herbal origin used via, fixed oils, waxes, gums colours, perfumes, protective agents, bleaching agents, antioxidants in products such as skin care, hair care and oral hygiene products. Herbal excipients: Herbal Excipients – Significance of substances of natural origin as excipients – colorants, sweeteners, binders, diluents, viscosity builders, disintegrants, flavors & perfumes. #### Herbal formulations: Conventional herbal formulations like syrups, mixtures and tablets and Novel dosage forms like phytosomes UNIT- IV 10 Hours Evaluation of Drugs WHO & ICH guidelines for the assessment of herbal drugs Stability testing of herbal drugs. Patenting and Regulatory requirements of natural products: a) Definition of the terms: Patent, IPR, Farmers right, Breeder's right, Bioprospecting and Biopiracy b) Patenting aspects of Traditional Knowledge and Natural Products. Case study of Curcuma & Neem. **Regulatory Issues** - Regulations in India (ASU DTAB, ASU DCC), Regulation of manufacture of ASU drugs - Schedule Z of Drugs & Cosmetics Act for ASU drugs. UNIT-V 07 Hours General Introduction to Herbal Industry Herbal drugs industry: Present scope and future prospects. A brief account of plant based industries and institutions involved in work on medicinal and aromatic plants in India. Schedule T - Good Manufacturing Practice of Indian systems of medicine Components of GMP (Schedule - T) and its objectives Infrastructural requirements, working space, storage area, machinery and equipments, standard operating procedures, health and hygiene, documentation and records. #### BP 609 P. HERBAL DRUG TECHNOLOGY (Practical) 4 hours/ week - 1. To perform preliminary phytochemical screening of crude drugs. - 2. Determination of the alcohol content of Asava and Arista - 3. Evaluation of excipients of natural origin - 4. Incorporation of prepared and standardized extract in cosmetic formulations like creams, lotions and shampoos and their evaluation. - 5. Incorporation of prepared and standardized extract in formulations like syrups, mixtures and tablets and their evaluation as per Pharmacopoeial requirements. - 6. Monograph analysis of herbal drugs from recent Pharmacopoeias - 7. Determination of Aldehyde content - 8. Determination of Phenol content - 9. Determination of total alkaloids # Recommended Books: (Latest Editions) - 1. Textbook of Pharmacognosy by Trease & Evans. - 2. Textbook of Pharmacognosy by Tyler, Brady & Robber. - 3. Pharmacognosy by Kokate, Purohit and Gokhale - 4. Essential of Pharmacognosy by Dr.S.H.Ansari - 5. Pharmacognosy & Phytochemistry by V.D.Rangari - 6. Pharmacopoeal standards for Ayurvedic Formulation (Council of Research in Indian Medicine & Homeopathy) - Mukherjee, P.W. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals. Business Horizons Publishers, New Delhi, India, 2002. # BP 604 T. BIOPHARMACEUTICS AND PHARMACOKINETICS (Theory) 45 Hours **Scope:** This subject is designed to impart knowledge and skills of Biopharmaceutics and pharmacokinetics and their applications in pharmaceutical development, design of dose and dosage regimen and in solving the problems arised therein. Objectives: Upon completion of the course student shall be able to: - 1. Understand the basic concepts in biopharmaceutics and pharmacokinetics and their significance. - 2. Use of plasma drug concentration-time data to calculate the pharmacokinetic parameters to describe the kinetics of drug absorption, distribution, metabolism, excretion, elimination. - 3. To understand the concepts of bioavailability and bioequivalence of drug products and their significance. - 4. Understand various pharmacokinetic parameters, their significance & applications. #### **Course Content:** #### UNIT-I application 10 Hours # Introduction to Biopharmaceutics Absorption; Mechanisms of drug absorption through GIT, factors influencing drug absorption though GIT, absorption of drug from Non per oral extra-vascular routes, Distribution Tissue permeability of drugs, binding of drugs, apparent, volume of drug distribution, plasma and tissue protein binding of drugs, factors affecting protein-drug binding. Kinetics of protein binding, Clinical significance of protein binding of drugs UNIT- II 10 Hours Elimination: Drug metabolism and basic understanding metabolic pathways renal excretion of drugs, factors affecting renal excretion of drugs, renal clearance, Non renal routes of drug excretion of drugs Bioavailability and Bioaquivalence: Definition and Objectives of bioavailability, absolute and relative bioavailability, measurement of bioavailability, in-vitro drug dissolution models, in-vitro-in-vivo correlations, bioaquivalence studies, methods to enhance the dissolution rates and bioavailability of poorly soluble drugs. UNIT- III 10 Hours Pharmacokinetics: Definition and introduction to Pharmacokinetics, Compartment models, Non compartment models, physiological models, One compartment open model. (a). Intravenous Injection (Bolus) (b). Intravenous infusion and (c) Extra vascular administrations. Pharmacokinetics parameters - K_E,t1/2,Vd,AUC,Ka, Clt and CL_R- definitions methods of eliminations, understanding of their significance and 137 UNIT- IV 08 Hours Multicompartment models: Two compartment open model. IV bolus Kinetics of multiple dosing, steady state drug levels, calculation of loading and mainetnance doses and their significance in clinical settins. UNIT- V 07 Hours Nonlinear Pharmacokinetics: a. Introduction, b. Factors causing Non-linearity. c. Michaelis-menton method of estimating parameters, Explanation with example of drugs. #### Recommended Books: (Latest Editions) - 1. Biopharmaceutics and Clinical Pharmacokinetics by, Milo Gibaldi. - 2. Biopharmaceutics and Pharmacokinetics; By Robert F Notari - 3. Applied biopharmaceutics and pharmacokinetics, Leon Shargel and Andrew B.C.YU 4th edition, Prentice-Hall Inernational edition. USA - 4. Bio pharmaceutics and Pharmacokinetics-A Treatise, By D. M. Brahmankar and Sunil B.Jaiswal, Vallabh Prakashan Pitampura, Delhi - 5. Pharmacokinetics: By Milo Glbaldi Donald, R. Mercel Dekker Inc. - Hand Book of Clinical Pharmacokinetics, By Milo Gibaldi and Laurie Prescott by ADIS Health Science Press. - 7. Biopharmaceutics; By Swarbrick - 8. Clinical Pharmacokinetics, Concepts and Applications: By Malcolm Rowland and - 9. Thomas, N. Tozen, Lea and Febrger, Philadelphia, 1995. - 10. Dissolution, Bioavailability and Bioequivalence, By Abdou H.M, Mack, Publishing Company, Pennsylvania 1989. - Biopharmaceutics and Clinical Pharmacokinetics-An introduction 4th edition Revised and expanded by Rebort F Notari Marcel Dekker Inn, New York and Basel, 1987. - 12. Remington's Pharmaceutical Sciences, By Mack Publishing Company, Pennsylvnia 138 # BP 605 T. PHARMACEUTICAL BIOTECHNOLOGY (Theory) 45 Hours #### Scope: - Biotechnology has a long promise to revolutionize the biological sciences and technology. - Scientific application of biotechnology in the field of genetic engineering, medicine and fermentation technology makes the subject interesting. - Biotechnology is leading to new biological revolutions in diagnosis, prevention and cure of diseases, new and cheaper pharmaceutical drugs. - Biotechnology has already produced transgenic crops and animals and the future promises lot more. - It is basically a research-based subject. . Objectives:
Upon completion of the subject student shall be able to; - 1. Understanding the importance of Immobilized enzymes in Pharmaceutical Industries - 2. Genetic engineering applications in relation to production of pharmaceuticals - 3. Importance of Monoclonal antibodies in Industries - 4. Appreciate the use of microorganisms in fermentation technology Unit I 10 Hours - a) Brief introduction to Biotechnology with reference to Pharmaceutical Sciences. - b) Enzyme Biotechnology- Methods of enzyme immobilization and applications. - c) Biosensors- Working and applications of biosensors in Pharmaceutical Industries. - d) Brief introduction to Protein Engineering. - e) Use of microbes in industry. Production of Enzymes- General consideration Amylase, Catalase, Peroxidase, Lipase, Protease, Penicillinase. - f) Basic principles of genetic engineering. Unit II 10 Hours - a) Study of cloning vectors, restriction endonucleases and DNA ligase. - b) Recombinant DNA technology. Application of genetic engineering in medicine. - c) Application of r DNA technology and genetic engineering in the production of: - i) Interferon ii) Vaccines- hepatitis- B iii) Hormones-Insulin. - d) Brief introduction to PCR Unit III 10 Hours Types of immunity- humoral immunity, cellular immunity - a) Structure of Immunoglobulins - b) Structure and Function of MHC - c) Hypersensitivity reactions, Immune stimulation and Immune suppressions. - d) General method of the preparation of bacterial vaccines, toxoids, viral vaccine, antitoxins, serum-immune blood derivatives and other products relative to immunity. - e) Storage conditions and stability of official vaccines - f) Hybridoma technology-Production, Purification and Applications - g) Blood products and Plasma Substituties, Unit IV 08Hours - a) Immuno blotting techniques- ELISA, Western blotting, Southern blotting. - b) Genetic organization of Eukaryotes and Prokaryotes - Microbial genetics including transformation, transduction, conjugation, plasmids and transposons. - d) Introduction to Microbial biotransformation and applications. - e) Mutation: Types of mutation/mutants. Unit V 07 Hours - a) Fermentation methods and general requirements, study of media, equipments, sterilization methods, aeration process, stirring. - b) Large scale production fermenter design and its various controls. - c) Study of the production of penicillins, citric acid, Vitamin B12, Glutamic acid, Griseofulvin, - d) Blood Products: Collection, Processing and Storage of whole human blood, dried human plasma, plasma Substituties. #### Recommended Books (Latest edition): - 1. B.R. Glick and J.J. Pasternak: Molecular Biotechnology: Principles and Applications of RecombinantDNA: ASM Press Washington D.C. - 2. RA Goldshy et. al., : Kuby Immunology. - 3. J.W. Goding: Monoclonal Antibodies. - 4. J.M. Walker and E.B. Gingold: Molecular Biology and Biotechnology by Royal Society of Chemistry. - 5. Zaborsky: Immobilized Enzymes, CRC Press, Degraland, Ohio. - 6. S.B. Primrose: Molecular Biotechnology (Second Edition) Blackwell Scientific Publication. - 7. Stanbury F., P., Whitakar A., and Hall J., S., Principles of fermentation technology, 2nd edition, Aditya books Ltd., New Delhi 140 # BP606TPHARMACEUTICAL QUALITY ASSURANCE (Theory) 45 Hours Scope: This course deals with the various aspects of quality control and quality assurance aspects of pharmaceutical industries. It deals with the important aspects like cGMP, QC tests, documentation, quality certifications and regulatory affairs. Objectives: Upon completion of the course student shall be able to: - · understand the cGMP aspects in a pharmaceutical industry - appreciate the importance of documentation - understand the scope of quality certifications applicable to pharmaceutical industries - understand the responsibilities of QA & QC departments #### Course content: UNIT - I 10 Hours Quality Assurance and Quality Management concepts: Definition and concept of Quality control, Quality assurance and GMP Total Quality Management (TQM): Definition, elements, philosophies ICH Guidelines: purpose, participants, process of harmonization, Brief overview of QSEM, with special emphasis on Q-series guidelines, ICH stability testing guidelines Quality by design (QbD): Definition, overview, elements of QbD program, tools ISO 9000 & ISO14000: Overview, Benefits, Elements, steps for registration NABL accreditation: Principles and procedures UNIT - II 10 Hours Organization and personnel: Personnel responsibilities, training, hygiene and personal records. Premises: Design, construction and plant layout, maintenance, sanitation, environmental control, utilities and maintenance of sterile areas, control of contamination. Equipments and raw materials: Equipment selection, purchase specifications, maintenance, purchase specifications and maintenance of stores for raw materials. UNIT – III 10 Hours Quality Control: Quality control test for containers, rubber closures and secondary packing 141 materials. Good Laboratory Practices: General Provisions, Organization and Personnel, Facilities, Equipment, Testing Facilities Operation, Test and Control Articles, Protocol for Conduct of a Nonclinical Laboratory Study, Records and Reports, Disqualification of Testing Facilities UNIT – IV 08 Hours Complaints: Complaints and evaluation of complaints, Handling of return good, recalling and waste disposal. **Document maintenance in pharmaceutical industry:** Batch Formula Record, Master Formula Record, SOP, Quality audit, Quality Review and Quality documentation, Reports and documents, distribution records. UNIT – V 07 Hours Calibration and Validation: Introduction, definition and general principles of calibration, qualification and validation, importance and scope of validation, types of validation, validation master plan. Calibration of pH meter, Qualification of UV-Visible spectrophotometer, General principles of Analytical method Validation. Warehousing: Good warehousing practice, materials management #### Recommended Books: (Latest Edition) - 1. Quality Assurance Guide by organization of Pharmaceutical Products of India. - 2. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol. 69. - 3. Quality Assurance of Pharmaceuticals- A compendium of Guide lines and Related materials Vol I WHO Publications. - 4. A guide to Total Quality Management- Kushik Maitra and Sedhan K Ghosh - 5. How to Practice GMP's P P Sharma. - ISO 9000 and Total Quality Management Sadhank G Ghosh - 7. The International Pharmacopoeia Vol I, II, III, IV- General Methods of Analysis and Quality specification for Pharmaceutical Substances, Excipients and Dosage forms - 8. Good laboratory Practices Marcel Deckker Series - 9. ICH guidelines, ISO 9000 and 14000 guidelines Vaagdevi College of Pharmary Warangal-506 yell SÉMESTER VII Vangdevi College of Philippool # BP701T. INSTRUMENTAL METHODS OF ANALYSIS (Theory) 45 Hours Scope: This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart a fundamental knowledge on the principles and instrumentation of spectroscopic and chromatographic technique. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing. Objectives: Upon completion of the course the student shall be able to - 1. Understand the interaction of matter with electromagnetic radiations and its applications in drug analysis - 2. Understand the chromatographic separation and analysis of drugs. - 3. Perform quantitative & qualitative analysis of drugs using various analytical instruments. #### Course Content: UNIT-I 10 Hours #### **UV Visible spectroscopy** Electronic transitions, chromophores, auxochromes, spectral shifts, solvent effect on absorption spectra, Beer and Lambert's law, Derivation and deviations. Instrumentation - Sources of radiation, wavelength selectors, sample cells, detectors-Photo tube, Photomultiplier tube, Photo voltaic cell, Silicon Photodiode. Applications - Spectrophotometric titrations, Single component and multi component analysis ## **Fluorimetry** Theory, Concepts of singlet, doublet and triplet electronic states, internal and external conversions, factors affecting fluorescence, quenching, instrumentation and applications UNIT-II 10 Hours ## IR spectroscopy Introduction, fundamental modes of vibrations in poly atomic molecules, sample handling, factors affecting vibrations Instrumentation - Sources of radiation, wavelength selectors, detectors - Golay cell, Bolometer, Thermocouple, Thermister, Pyroelectric detector and applications Flame Photometry-Principle, interferences, instrumentation and applications Atomic absorption spectroscopy- Principle, interferences, instrumentation and applications Nepheloturbidometry- Principle, instrumentation and applications UNIT-III 10 Hours Introduction to chromatography Adsorption and partition column chromatography-Methodology, advantages, disadvantages and applications. Thin layer chromatography- Introduction, Principle, Methodology, Rf values, advantages, disadvantages and applications. Paper chromatography-Introduction, methodology, development techniques, advantages, disadvantages and applications Electrophoresis—Introduction, factors affecting electrophoretic mobility, Techniques of paper, gel, capillary electrophoresis, applications UNIT -IV 08 Hours Gas chromatography - Introduction, theory, instrumentation, derivatization, temperature programming, advantages, disadvantages and applications High performance liquid chromatography (HPLC)-Introduction, theory, instrumentation, advantages and applications. UNIT-V 07 Hours Ion exchange chromatography- Introduction, classification, ion exchange resins, properties, mechanism of ion exchange process, factors affecting ion exchange, methodology and applications Gel chromatography- Introduction, theory, instrumentation and applications Affinity
chromatography- Introduction, theory, instrumentation and applications Principal pharmacy Principal pharmacy Vaagdavi College of Pharmacy Hanamkonda, Warangal-509 Hanamkonda, Warangal-509 ## BP705P, INSTRUMENTAL METHODS OF ANALYSIS (Practical) 4 Hours/Week - Determination of absorption maxima and effect of solvents on absorption maxima of organic compounds - 2 Estimation of dextrose by colorimetry - 3 Estimation of sulfanilamide by colorimetry - 4 Simultaneous estimation of ibuprofen and paracetamol by UV spectroscopy - 5 Assay of paracetamol by UV-Spectrophotometry - 6 Estimation of quinine sulfate by fluorimetry - 7 Study of quenching of fluorescence - 8 Determination of sodium by flame photometry - 9 Determination of potassium by flame photometry - 10 Determination of chlorides and sulphates by nephelo turbidometry - 11 Separation of amino acids by paper chromatography - 12 Separation of sugars by thin layer chromatography - 13 Separation of plant pigments by column chromatography - 14 Demonstration experiment on HPLC - 15 Demonstration experiment on Gas Chromatography ## **Recommended Books (Latest Editions)** - 1. Instrumental Methods of Chemical Analysis by B.K Sharma - 2. Organic spectroscopy by Y.R Sharma - 3. Text book of Pharmaceutical Analysis by Kenneth A. Connors - 4. Vogel's Text book of Quantitative Chemical Analysis by A.I. Vogel - 5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake - 6. Organic Chemistry by I. L. Finar - 7. Organic spectroscopy by William Kemp - 8. Quantitative Analysis of Drugs by D. C. Garrett - 9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi - 10. Spectrophotometric identification of Organic Compounds by Silverstein Vaagdevi Cotte Warangal-506 00* # BP 702 T. INDUSTRIAL PHARMACYII (Theory) 45 Hours Scope: This course is designed to impart fundamental knowledge on pharmaceutical product development and translation from laboratory to market Objectives: Upon completion of the course, the student shall be able to: - 1. Know the process of pilot plant and scale up of pharmaceutical dosage forms - 2. Understand the process of technology transfer from lab scale to commercial batch - 3. Know different Laws and Acts that regulate pharmaceutical industry - 4. Understand the approval process and regulatory requirements for drug products #### **Course Content:** UNIT-I 10 Hours Pilot plant scale up techniques: General considerations - including significance of personnel requirements, space requirements, raw materials, Pilot plant scale up considerations for solids, liquid orals, semi solids and relevant documentation, SUPAC guidelines, Introduction to platform technology UNIT-II 10 Hours Technology development and transfer: WHO guidelines for Technology Transfer (TT): Terminology, Technology transfer protocol, Quality risk management, Transfer from R & D to production (Process, packaging and cleaning), Granularity of TT Process (API, excipients, finished products, packaging materials) Documentation, Premises and equipments, qualification and validation, quality control, analytical method transfer, Approved regulatory bodies and agencies, Commercialization - practical aspects and problems (case studies), TT agencies in India - APCTD, NRDC, TIFAC, BCIL, TBSE / SIDBI; TT related documentation - confidentiality agreement, licensing, MoUs, legal issues UNIT-HI 10 Hours Regulatory affairs: Introduction, Historical overview of Regulatory Affairs, Regulatory authorities, Role of Regulatory affairs department, Responsibility of Regulatory Affairs Professionals Regulatory requirements for drug approval: Drug Development Teams, Non-Clinical Drug Development, Pharmacology, Drug Metabolism and Toxicology, General considerations of Investigational New Drug (IND) Application, Investigator's Brochure (IB) and New Drug Application (NDA), Clinical research / BE studies, Clinical Research Protocols, Biostatistics in Pharmaceutical Product Development, Data Presentation for FDA Submissions, Management of Clinical Studies. Vaagdevi College or eladi Warangal-500 001 UNIT-IV 08 Hours Quality management systems: Quality management & Certifications: Concept of Quality, Total Quality Management, Quality by Design (QbD), Six Sigma concept, Out of Specifications (OOS), Change control, Introduction to ISO 9000 series of quality systems standards, ISO 14000, NABL, GLP UNIT-V 07 Hours Indian Regulatory Requirements: Central Drug Standard Control Organization (CDSCO) and State Licensing Authority: Organization, Responsibilities, Certificate of Pharmaceutical Product (COPP), Regulatory requirements and approval procedures for New Drugs. # Recommended Books: (Latest Editions) - 1. Regulatory Affairs from Wikipedia, the free encyclopedia modified on 7th April available at http://en.wikipedia.org/wiki/Regulatory_ Affairs. - 2. International Regulatory Affairs Updates, 2005. available at http://www.iraup.com/about.php - 3. Douglas J Pisano and David S. Mantus. Text book of FDA Regulatory Affairs A Guide for Prescription Drugs, Medical Devices, and Biologics' Second Edition. - 4. Regulatory Affairs brought by learning plus, inc. available at http://www.cgmp.com/ra.htm. Vangdevi College of Pharma Vangdevi College of Pharma Hanamkonda, Warangal-906 06 # BP 703T. PHARMACY PRACTICE (Theory) 45 Hours Scope: In the changing scenario of pharmacy practice in India, for successful practice of Hospital Pharmacy, the students are required to learn various skills like drug distribution, drug information, and therapeutic drug monitoring for improved patient care. In community pharmacy, students will be learning various skills such as dispensing of drugs, responding to minor ailments by providing suitable safe medication, patient counselling for improved patient care in the community set up. Objectives: Upon completion of the course, the student shall be able to - 1. know various drug distribution methods in a hospital - 2. appreciate the pharmacy stores management and inventory control - 3. monitor drug therapy of patient through medication chart review and clinical review - 4. obtain medication history interview and counsel the patients - 5. identify drug related problems - 6. detect and assess adverse drug reactions - interpret selected laboratory results (as monitoring parameters in therapeutics) of specific disease states - 8. know pharmaceutical care services - 9. do patient counseling in community pharmacy; - 10. appreciate the concept of Rational drug therapy. Unit I: 10 Hours ## a) Hospital and it's organization Definition, Classification of hospital- Primary, Secondary and Tertiary hospitals, Classification based on clinical and non-clinical basis, Organization Structure of a Hospital, and Medical staffs involved in the hospital and their functions. # b) Hospital pharmacy and its organization Definition, functions of hospital pharmacy, Organization structure, Location, Layout and staff requirements, and Responsibilities and functions of hospital pharmacists. c) Adverse drug reaction Classifications - Excessive pharmacological effects, secondary pharmacological effects, idiosyncrasy, allergic drug reactions, genetically determined toxicity, toxicity following sudden withdrawal of drugs, Drug interaction- beneficial interactions, adverse interactions, and pharmacokinetic drug interactions, Methods for detecting Principa! Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 drug interactions, spontaneous case reports and record linkage studies, and Adverse drug reaction reporting and management. # d) Community Pharmacy Organization and structure of retail and wholesale drug store, types and design, Legal requirements for establishment and maintenance of a drug store, Dispensing of proprietary products, maintenance of records of retail and wholesale drug store. Unit II: 10 Hours # a) Drug distribution system in a hospital Dispensing of drugs to inpatients, types of drug distribution systems, charging policy and labelling, Dispensing of drugs to ambulatory patients, and Dispensing of controlled drugs. # b) Hospital formulary Definition, contents of hospital formulary, Differentiation of hospital formulary and Drug list, preparation and revision, and addition and deletion of drug from hospital formulary. # c) Therapeutic drug monitoring Need for Therapeutic Drug Monitoring, Factors to be considered during the Therapeutic Drug Monitoring, and Indian scenario for Therapeutic Drug Monitoring. #### d) Medication adherence Causes of medication non-adherence, pharmacist role in the medication adherence, and monitoring of patient medication adherence. # e) Patient medication history interview Need for the patient medication history interview, medication interview forms. #### f) Community pharmacy management Financial, materials, staff, and infrastructure requirements. Unit III: 10 Hours ## a) Pharmacy and therapeutic committee Organization, functions, Policies of the pharmacy and therapeutic committee in including drugs into formulary, inpatient and outpatient prescription, automatic stop order, and emergency drug list preparation. b) information services Drug Vaagdevi College of Phartis Warangal-506 001 Drug and Poison information centre, Sources of drug information, Computerised services, and storage and retrieval of information. c) Patient counseling Definition of patient counseling; steps involved in patient counseling, and Special cases that require the pharmacist d) Education and training program in the hospital Role of pharmacist in the education and training program, Internal and external training program, Services to the nursing homes/clinics, Code of ethics for community pharmacy, and Role of pharmacist in the interdepartmental communication and community Health education. e) Prescribed medication order and communication skills Prescribed medication order- interpretation and legal requirements, and Communication skills- communication with prescribers and patients. Unit IV
8 Hours Budget preparation and implementation Budget preparation and implementation b) Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pharmacy, functions and responsibilities of clinical pharmacist, Drug therapy monitoring - medication chart review, clinical review, pharmacist intervention, Ward round participation, Medication history and Pharmaceutical care. Dosing pattern and drug therapy based on Pharmacokinetic & disease pattern. c) Over the counter (OTC) sales Introduction and sale of over the counter, and Rational use of common over the counter medications. Unit V 7 Hours a) Drug store management and inventory control Organisation of drug store, types of materials stocked and storage conditions, Purchase and inventory control: principles, purchase procedure, purchase order, procurement and stocking, Economic order quantity, Reorder quantity level, and Methods used for the analysis of the drug expenditure b) Investigational use of drugs Vaagdevi College of Pharmac) Hanamkonda, Warangal-500 001 Description, principles involved, classification, control, identification, role of hospital pharmacist, advisory committee. # c) Interpretation of Clinical Laboratory Tests Blood chemistry, hematology, and urinalysis # Recommended Books (Latest Edition): - 1. Merchant S.H. and Dr. J.S.Quadry. *A textbook of hospital pharmacy*, 4th ed. Ahmadabad: B.S. Shah Prakakshan; 2001. - 2. Parthasarathi G, Karin Nyfort-Hansen, Milap C Nahata. *A textbook of Clinical Pharmacy Practice- essential concepts and skills*, 1st ed. Chennai: Orient Longman Private Limited; 2004. - 3. William E. Hassan. *Hospital pharmacy*, 5th ed. Philadelphia: Lea & Febiger; 1986. - 4. Tipnis Bajai. Hospital Pharmacy, 1st ed. Maharashtra: Career Publications; 2008. - 5. Scott LT. *Basic skills in interpreting laboratory data*, 4thed. American Society of Health System Pharmacists Inc; 2009. - 6. Parmar N.S. *Health Education and Community Pharmacy*, 18th ed. India: CBS Publishers & Distributers; 2008. # Journals: - 1. Therapeutic drug monitoring. ISSN: 0163-4356 - 2. Journal of pharmacy practice. ISSN: 0974-8326 - 3. American journal of health system pharmacy. ISSN: 1535-2900 (online) - 4. Pharmacy times (Monthly magazine) Principal Vaagdevi College of Pharmac Hanamkonda, Warangal-506 001 # BP 704T: NOVEL DRUG DELIVERY SYSTEMS (Theory) 45 Hours **Scope:** This subject is designed to impart basic knowledge on the area of novel drug delivery systems. Objectives: Upon completion of the course student shall be able - 1. To understand various approaches for development of novel drug delivery systems. - 2. To understand the criteria for selection of drugs and polymers for the development of Novel drug delivery systems, their formulation and evaluation #### Course content: Unit-I 10 Hours Controlled drug delivery systems: Introduction, terminology/definitions and rationale, advantages, disadvantages, selection of drug candidates. Approaches to design controlled release formulations based on diffusion, dissolution and ion exchange principles. Physicochemical and biological properties of drugs relevant to controlled release formulations **Polymers:** Introduction, classification, properties, advantages and application of polymers in formulation of controlled release drug delivery systems. Unit-II 10 Hours Microencapsulation: Definition, advantages and disadvantages, microspheres /microcapsules, microparticles, methods of microencapsulation, applications Mucosal Drug Delivery system: Introduction, Principles of bioadhesion / mucoadhesion, concepts, advantages and disadvantages, transmucosal permeability and formulation considerations of buccal delivery systems Implantable Drug Delivery Systems:Introduction, advantages and disadvantages, concept of implants and osmotic pump Unit-III 10 Hours Transdermal Drug Delivery Systems: Introduction, Permeation through skin, factors affecting permeation, permeation enhancers, basic components of TDDS, formulation approaches Gastroretentive drug delivery systems: Introduction, advantages, disadvantages, approaches for GRDDS – Floating, high density systems, inflatable and gastroadhesive systems and their applications Nasopulmonary drug delivery system: Introduction to Nasal and Pulmonary routes of drug delivery, Formulation of Inhalers (dry powder and metered dose), nasal sprays, nebulizers Unit-IV 08 Hours Principal Vaaydevi College of Pharmac Hanamkonda, Warangal-500 001 Targeted drug Delivery: Concepts and approaches advantages and disadvantages, introduction to liposomes, niosomes, nanoparticles, monoclonal antibodies and their applications 07 Hours Unit-V Ocular Drug Delivery Systems: Introduction, intra ocular barriers and methods to overcome - Preliminary study, ocular formulations and ocuserts Intrauterine Drug Delivery Systems: Introduction, advantages and disadvantages, development of intra uterine devices (IUDs) and applications # Recommended Books: (Latest Editions) - Y W. Chien, Novel Drug Delivery Systems, 2nd edition, revised and expanded, 1. Marcel Dekker, Inc., New York, 1992. - Robinson, J. R., Lee V. H. L, Controlled Drug Delivery Systems, Marcel Dekker, 2. Inc., New York, 1992. - Encyclopedia of Controlled Delivery. Edith Mathiowitz, Published by Wiley 3. Interscience Publication, John Wiley and Sons, Inc, New York. Chichester/Weinheim - N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, New Delhi, First edition 1997 (reprint in 2001). - S.P. Vyas and R.K. Khar, Controlled Drug Delivery -concepts and advances, Vallabh Prakashan, New Delhi, First edition 2002. ## **Journals** - Indian Journal of Pharmaceutical Sciences (IPA) 1. - 2. Indian Drugs (IDMA) - Journal of Controlled Release (Elsevier Sciences) 3. - Drug Development and Industrial Pharmacy (Marcel & Decker) 4. - International Journal of Pharmaceutics (Elsevier Sciences) 5. 154 SEMESTER VIII Vaagdevi College of Pharmany Hanamkonda, Warangal-506 001 # BP801T. BIOSTATISITCS AND RESEARCH METHODOLOGY (Theory) 45 Hours Scope: To understand the applications of Biostatics in Pharmacy. This subject deals with descriptive statistics, Graphics, Correlation, Regression, logistic regression Probability theory, Sampling technique, Parametric tests, Non Parametric tests, ANOVA, Introduction to Design of Experiments, Phases of Clinical trials and Observational and Experimental studies, SPSS, R and MINITAB statistical software's, analyzing the statistical data using Excel. Objectives: Upon completion of the course the student shall be able to - Know the operation of M.S. Excel, SPSS, R and MINITAB®, DoE (Design of Experiment) - Know the various statistical techniques to solve statistical problems - · Appreciate statistical techniques in solving the problems. #### Course content: Unit-I 10 Hours Introduction: Statistics, Biostatistics, Frequency distribution Measures of central tendency: Mean, Median, Mode-Pharmaceutical examples Measures of dispersion: Dispersion, Range, standard deviation, Pharmaceutical problems Correlation: Definition, Karl Pearson's coefficient of correlation, Multiple correlation - Pharmaceuticals examples Unit-II 10 Hours **Regression:** Curve fitting by the method of least squares, fitting the lines y= a + bx and x = a + by, Multiple regression, standard error of regression- Pharmaceutical Examples **Probability:** Definition of probability, Binomial distribution, Normal distribution, Poisson's distribution, properties - problems Sample, Population, large sample, small sample, Null hypothesis, alternative hypothesis, sampling, essence of sampling, types of sampling, Error-I type, Error-II type, Standard error of mean (SEM) - Pharmaceutical examples Parametric test: t-test(Sample, Pooled or Unpaired and Paired), ANOVA, (One way and Two way), Least Significance difference Unit-III 10 Hours Non Parametric tests: Wilcoxon Rank Sum Test, Mann-Whitney U test, Kruskal-Wallis test, Friedman Test Principal Vandevi College of Pharmacy Vandevi College of Pharmacy Vandevi College of Pharmacy Vandevi College of Pharmacy Introduction to Research: Need for research, Need for design of Experiments, Experiential Design Technique, plagiarism **Graphs:** Histogram, Pie Chart, Cubic Graph, response surface plot, Counter Plot graph **Designing the methodology:** Sample size determination and Power of a study, Report writing and presentation of data, Protocol, Cohorts—studies, Observational studies, Experimental studies, Designing clinical trial, various phases. Unit-IV 8 Hours Blocking and confounding system for Two-level factorials Regression modeling: Hypothesis testing in Simple and Multiple regressionmodels Introduction to Practical components of Industrial and Clinical Trials Problems: Statistical Analysis Using Excel, SPSS, MINITAB®, DESIGN OF EXPERIMENTS, R - Ohline Statistical Software's to Industrial and Clinical trial approach Unit-V 7Hours Design and Analysis of experiments: Factorial Design: Definition, 2², 2³design. Advantage of factorial design Response Surface methodology: Central composite design, Historical design, Optimization Techniques ## Recommended Books (Latest edition): - 1. Pharmaceutical statistics- Practical and clinical applications, Sanford Bolton, publisher Marcel Dekker Inc. NewYork. - 2. Fundamental of Statistics Himalaya Publishing House-S.C.Guptha - Design and Analysis of Experiments -PHI Learning Private Limited, R. Pannerselvam, - 4. Design and Analysis of Experiments Wiley Students Edition, Douglas and C. Montgomery Principal Vaagdevi College of Pharma6y Hanamkonda, Warangal-506 881 ## BP 802T SOCIAL AND PREVENTIVE PHARMACY Hours: 45 Scope: The purpose of this course is to introduce to students a number of health issues and their challenges. This course also introduced a number of national health programmes. The roles of the pharmacist in these contexts are also discussed. **Objectives:** After the successful completion of this course, the student shall be able to: - ·
Acquire high consciousness/realization of current issuesrelated to health and - pharmaceutical problems within the country and worldwide. - Have a critical way of thinking based on current healthcare development. - Evaluate alternative ways of solving problems related tohealth and pharmaceutical issues Course content: Unit I: 10 Hours Concept of health and disease: Definition, concepts and evaluation of public health. Understanding the concept of prevention and control of disease, social causes of diseases and social problems of the sick. Social and health education: Food in relation to nutrition and health, Balanced diet, Nutritional deficiencies, Vitamin deficiencies, Malnutrition and its prevention. Sociology and health: Socio cultural factors related to health and disease, Impact of urbanization on health and disease, Poverty and health Hygiene and health: personal hygiene and health care; avoidable habits Unit II: 10 Hours Preventive medicine: General principles of prevention and control of diseases such as cholera, SARS, Ebola virus, influenza, acute respiratory infections, malaria, chicken guinea, dengue, lymphatic filariasis, pneumonia, hypertension, diabetes mellitus, cancer, drug addiction-drug substance abuse Unit III: 10 Hours National health programs, its objectives, functioning and outcome of the following: HIV AND AIDS control programme, TB, Integrated disease surveillance program (IDSP), National Ieprosy control programme, National mental health program, National Principal Vaagdevi College of Pharm Hanamkonda, Warangal-500 programme for prevention and control of deafness, Universal immunization programme, National programme for control of blindness, Pulse polio programme. Unit IV: 08 Hours National health intervention programme for mother and child, National family welfare programme, National tobacco control programme, National Malaria Prevention Program, National programme for the health care for the elderly, Social health programme; role of WHO in Indian national program Unit V: 07 Hours Community services in rural, urban and school health: Functions of PHC, Improvement in rural sanitation, national urban health mission, Health promotion and education in school. # Recommended Books (Latest edition): - Short Textbook of Preventive and Social Medicine, Prabhakara GN, 2nd Edition, 2010, ISBN: 9789380704104, JAYPEE Publications - Textbook of Preventive and Social Medicine (Mahajan and Gupta), Edited by Roy Rabindra Nath, Saha Indranil, 4th Edition, 2013, ISBN: 9789350901878, JAYPEE Publications - 3. Review of Preventive and Social Medicine (Including Biostatistics), Jain Vivek, 6th Edition, 2014, ISBN: 9789351522331, JAYPEE Publications - Essentials of Community Medicine—A Practical Approach, Hiremath Lalita D, Hiremath Dhananjaya A, 2nd Edition, 2012, ISBN: 9789350250440, JAYPEE Publications - 5. Park Textbook of Preventive and Social Medicine, K Park, 21st Edition, 2011, ISBN-14: 9788190128285, BANARSIDAS BHANOT PUBLISHERS. - 6. Community Pharmacy Practice, Ramesh Adepu, BSP publishers, Hyderabad #### Recommended Journals: 1. Research in Social and Administrative Pharmacy, Elsevier, Ireland # BP803ET. PHARMA MARKETING MANAGEMENT (Theory) 45 Hours Scope: The pharmaceutical industry not only needs highly qualified researchers, chemists and, technical people, but also requires skilled managers who can take the industry forward by managing and taking the complex decisions which are imperative for the growth of the industry. The Knowledge and Know-how of marketing management groom the people for taking a challenging role in Sales and Product management. Course Objective: The course aims to provide an understanding of marketing concepts and techniques and their applications in the pharmaceutical industry. Unit I 10 Hours Marketing: Definition, general concepts and scope of marketing; Distinction between marketing & selling; Marketing environment; Industry and competitive analysis; Analyzing consumer buying behavior; industrial buying behavior. ## Pharmaceutical market: Quantitative and qualitative aspects; size and composition of the market; demographic descriptions and socio-psychological characteristics of the consumer; market segmentation& targeting.Consumer profile; Motivation and prescribing habits of the physician; patients' choice of physician and retail pharmacist.Analyzing the Market;Role of market research. Unit II 10 Hours Product decision: Classification, product line and product mix decisions, product life cycle, product portfolio analysis; product positioning; New product decisions; Product branding, packaging and labeling decisions, Product management in pharmaceutical industry. Unit III 10 Hours **Promotion:** Methods, determinants of promotional mix, promotional budget; An overview of personal selling, advertising, direct mail, journals, sampling, retailing, medical exhibition, public relations, online promotional techniques for OTC Products. Principa! 160 Unit IV 10 Hours # Pharmaceutical marketing channels: Designing channel, channel members, selecting the appropriate channel, conflict in channels, physical distribution management: Strategic importance, tasks in physical distribution management. # Professional sales representative (PSR): Duties of PSR, purpose of detailing, selection and training, supervising, norms for customer calls, motivating, evaluating, compensation and future prospects of the PSR. Unit V 10 Hours Pricing: Meaning, importance, objectives, determinants of price; pricing methods and strategies, issues in price management in pharmaceutical industry. An overview of DPCO (Drug Price Control Order) and NPPA (National Pharmaceutical Pricing Authority). # Emerging concepts in marketing: Vertical & Horizontal Marketing; RuralMarketing; Consumerism; Industrial Marketing; Global Marketing. # **Recommended Books: (Latest Editions)** - Philip Kotler and Kevin Lane Keller: Marketing Management, Prentice Hall of India, New Delhi - 2. Walker, Boyd and Larreche: Marketing Strategy- Planning and Implementation, Tata MC GrawHill, New Delhi. - 3. Dhruv Grewal and Michael Levy: Marketing, Tata MC Graw Hill - 4. Arun Kumar and N Menakshi: Marketing Management, Vikas Publishing, India - 5. Rajan Saxena: Marketing Management; Tata MC Graw-Hill (India Edition) - 6. Ramaswamy, U.S & Nanakamari, S: Marketing Managemnt:Global Perspective, IndianContext,Macmilan India, New Delhi. - 7. Shanker, Ravi: Service Marketing, Excell Books, New Delhi - 8. Subba Rao Changanti, Pharmaceutical Marketing in India (GIFT Excel series) Excel Publications. 2 161 # BP804 ET: PHARMACEUTICAL REGULATORY SCIENCE (Theory) 45Hours Scope: This course is designed to impart the fundamental knowledge on the regulatory requirements for approval of new drugs, and drug products in regulated markets of India & other countries like US, EU, Japan, Australia, UK etc. It prepares the students to learn in detail on the regulatory requirements, documentation requirements, and registration procedures for marketing the drug products. - Objectives: Upon completion of the subject student shall be able to; - 1. Know about the process of drug discovery and development - 2. Know the regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals - 3. Know the regulatory approval process and their registration in Indian and international markets #### Course content: Unit I 10Hours # New Drug Discovery and development Stages of drug discovery, Drug development process, pre-clinical studies, non-clinical activities, clinical studies, Innovator and generics, Concept of generics, Generic drug product development. Unit II 10Hours # Regulatory Approval Process Approval processes and timelines involved in Investigational New Drug (IND), New Drug Application (NDA), Abbreviated New Drug Application (ANDA). Changes to an approved NDA / ANDA. # Regulatory authorities and agencies Overview of regulatory authorities of India, United States, European Union, Australia, Japan, Canada (Organization structure and types of applications) Unit III 10Hours # Registration of Indian drug product in overseas market Procedure for export of pharmaceutical products, Technical documentation, Drug Master Files (DMF), Common Technical Document (CTD), electronic Common Technical Vaagdevi College of Pharmany Hanamkenda, Warangal-955 up i Document (eCTD), ASEAN Common Technical Document (ACTD)research. Unit IV 08Hours #### Clinical trials Developing clinical trial protocols, Institutional Review Board / Independent Ethics committee - formation and working procedures, Informed consent process and procedures, GCP obligations of Investigators, sponsors & Monitors, Managing and Monitoring clinical trials, Pharmacovigilance - safety monitoring in clinical trials Unit V 07Hours # **Regulatory Concepts** Basic terminology, guidance, guidelines, regulations, Laws and Acts, Orange book, Federal Register, Code of Federal Regulatory, Purple book # Recommended books (Latest edition): - 1. Drug Regulatory Affairs by Sachin Itkar, Dr. N.S. Vyawahare, Nirali Prakashan. - 2. The Pharmaceutical Regulatory Process, Second Edition Edited by Ira R. Berry and Robert P. Martin, Drugs and the Pharmaceutical Sciences, Vol. 185. Informa Health care Publishers. - 3. New Drug Approval Process: Accelerating Global Registrations By Richard A Guarino, MD, 5th edition, Drugs and the Pharmaceutical Sciences, Vol. 190. - Guidebook for drug regulatory submissions / Sandy Weinberg. By John Wiley & Sons, Inc. - 5. FDA Regulatory Affairs: a guide for prescription drugs, medical devices, and biologics /edited by Douglas J. Pisano, David Mantus. - 6. Generic Drug Product Development, Solid Oral Dosage forms, Leon Shargel and Isader Kaufer, Marcel Dekker series, Vol.143 - 7. Clinical Trials and Human Research: A Practical Guide to Regulatory Compliance By Fay A. Rozovsky and Rodney K. Adams - 8. Principles and Practices of Clinical Research, Second Edition Edited by John I.
Gallin and Frederick P. Ognibene - 9. Drugs: From Discovery to Approval, Second Edition By Rick Ng Principal Vaagdevi College of F. Hanamkonda, Warangal-bu # BP 805T: PHARMACOVIGILANCE (Theory) 45 hours Scope: This paper will provide an opportunity for the student to learn about development of pharmacovigilance as a science, basic terminologies used in pharmacovigilance, global scenario of Pharmacovigilance, train students on establishing pharmacovigilance programme in an organization, various methods that can be used to generate safety data and signal detection. This paper also develops the skills of classifying drugs, diseases and adverse drug reactions. ## **Objectives:** At completion of this paper it is expected that students will be able to (know, do, and appreciate): - 1. Why drug safety monitoring is important? - 2. History and development of pharmacovigilance - 3. National and international scenario of pharmacovigilance - 4. Dictionaries, coding and terminologies used in pharmacovigilance - 5. Detection of new adverse drug reactions and their assessment - 6. International standards for classification of diseases and drugs - 7. Adverse drug reaction reporting systems and communication in pharmacovigilance - 8. Methods to generate safety data during pre clinical, clinical and post approval phases of drugs' life cycle - 9. Drug safety evaluation in paediatrics, geriatrics, pregnancy and lactation - 10. Pharmacovigilance Program of India (PvPI) requirement for ADR reporting in India - 11. ICH guidelines for ICSR, PSUR, expedited reporting, pharmacovigilance planning - 12. CIOMS requirements for ADR reporting - 13. Writing case narratives of adverse events and their quality. #### Course Content Unit I 10 Hours ## Introduction to Pharmacovigilance - History and development of Pharmacovigilance - Importance of safety monitoring of Medicine - WHO international drug monitoring programme - Pharmacovigilance Program of India(PvPI) # Introduction to adverse drug reactions - Definitions and classification of ADRs - Detection and reporting - Methods in Causality assessment - Severity and seriousness assessment - Predictability and preventability assessment - Management of adverse drug reactions Basic terminologies used in pharmacovigilance Principal Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 - Terminologies of adverse medication related events - Regulatory terminologies #### Unit II 9 #### 10 hours ## Drug and disease classification - Anatomical, therapeutic and chemical classification of drugs - International classification of diseases - Daily defined doses - International Non proprietary Names for drugs ## Drug dictionaries and coding in pharmacovigilance - WHO adverse reaction terminologies - MedDRA and Standardised MedDRA queries - · WHO drug dictionary - Eudravigilance medicinal product dictionary ## Information resources in pharmacovigilance - · Basic drug information resources - Specialised resources for ADRs # Establishing pharmacovigilance programme - · Establishing in a hospital - Establishment & operation of drug safety department in industry - Contract Research Organisations (CROs) - Establishing a national programme # Unit III # 10 Hours #### Vaccine safety surveillance - · Vaccine Pharmacovigilance - Vaccination failure - Adverse events following immunization ## Pharmacovigilance methods - Passive surveillance Spontaneous reports and case series - Stimulated reporting - Active surveillance Sentinel sites, drug event monitoring and registries - Comparative observational studies Cross sectional study, case control study and cohort study - Targeted clinical investigations # Communication in pharmacovigilance - Effective communication in Pharmacovigilance - · Communication in Drug Safety Crisis management - Communicating with Regulatory Agencies, Business Partners, Healthcare facilities & Media Principal #### Unit IV #### Safety data generation - Pre clinical phase - Clinical phase - Post approval phase (PMS) ## ICH Guidelines for Pharmacovigilance - Organization and objectives of ICH - Expedited reporting - Individual case safety reports - Periodic safety update reports - Post approval expedited reporting - Pharmacovigilance planning - Good clinical practice in pharmacovigilance studies #### Unit V # 7 hours 8 Hours # Pharmacogenomics of adverse drug reactions Genetics related ADR with example focusing PK parameters. ## Drug safety evaluation in special population - Paediatrics - Pregnancy and lactation - Geriatrics ## CIOMS - CIOMS Working Groups - CIOMS Form ## CDSCO (India) and Pharmacovigilance - · D&C Act and Schedule Y - Differences in Indian and global pharmacovigilance requirements ## Recommended Books (Latest edition): - 1. Textbook of Pharmacovigilance: S K Gupta, Jaypee Brothers, Medical Publishers. - 2. Practical Drug Safety from A to Z By Barton Cobert, Pierre Biron, Jones and Bartlett Publishers. - 3. Mann's Pharmacovigilance: Elizabeth B. Andrews, Nicholas, Wiley Publishers. - 4. Stephens' Detection of New Adverse Drug Reactions: John Talbot, Patrick Walle, Wiley Publishers. - 5. An Introduction to Pharmacovigilance: Patrick Waller, Wiley Publishers. - 6. Cobert's Manual of Drug Safety and Pharmacovigilance: Barton Cobert, Jones & Bartlett Publishers. - 7. Textbook of Pharmacoepidemiolog edited by Brian L. Strom, Stephen E Kimmel, Sean Hennessy, Wiley Publishers. - 8. A Textbook of Clinical Pharmacy Practice -Essential Concepts and Skills:G. Parthasarathi, Karin NyfortHansen, Milap C. Nahata - 9. National Formulary of India - 10. Text Book of Medicine by Yashpal Munjal - 11. Text book of Pharmacovigilance: concept and practice by GP Mohanta and PK Manna Principal Vaagdevi College of Pharmasy Hanamkonda, Warangal-506 001 - 12. http://www.whoumc.org/DynPage.aspx?id=105825&mn1=7347&mn2=7259&mn 3=7297 - 13. http://www.ich.org/ - 14. http://www.cioms.ch/ - 15. http://edsco.nic.in/ - 16. http://www.who.int/vaccine_safety/en/ - 17. http://www.ipc.gov.in/PvPI/pv_home.html Principal Vaagdevi College of Pharmacy Unamkonda, Warangal-506 001 # BP 806 ET. QUALITY CONTROL AND STANDARDIZATION OF HERBALS (Theory) Scope: In this subject the student learns about the various methods and guidelines for evaluation and standardization of herbs and herbal drugs. The subject also provides an opportunity for the student to learn cGMP, GAP and GLP in traditional system of medicines. Objectives: Upon completion of the subject student shall be able to; - 1. know WHO guidelines for quality control of herbal drugs - 2. know Quality assurance in herbal drug industry - 3. know the regulatory approval process and their registration in Indian and international markets - 4. appreciate EU and ICH guidelines for quality control of herbal drugs Unit I 10 hours Basic tests for drugs - Pharmaceutical substances, Medicinal plants materials and dosage forms WHO guidelines for quality control of herbal drugs. Evaluation of commercial crude drugs intended for use Unit II 10 hours Quality assurance in herbal drug industry of cGMP, GAP, GMP and GLP in traditional system of medicine. WHO Guidelines on current good manufacturing Practices (cGMP) for Herbal Medicines WHO Guidelines on GACP for Medicinal Plants. Unit III 10 hours EU and ICH guidelines for quality control of herbal drugs. Research Guidelines for Evaluating the Safety and Efficacy of Herbal Medicines Unit IV 08 hours Stability testing of herbal medicines. Application of various chromatographic techniques in standardization of herbal products. Preparation of documents for new drug application and export registration GMP requirements and Drugs & Cosmetics Act provisions. Principal Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 Unit V 07 hours Regulatory requirements for herbal medicines. WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems Comparison of various Herbal Pharmacopoeias. Role of chemical and biological markers in standardization of herbal products ## **Recommended Books: (Latest Editions** - 1. Pharmacognosy by Trease and Evans - 2. Pharmacognosy by Kokate, Purohit and Gokhale - Rangari, V.D., Text book of Pharmacognosy and Phytochemistry Vol. I, Carrier Pub., 2006. - 4. Aggrawal, S.S., Herbal Drug Technology. Universities Press, 2002. - EMEA. Guidelines on Quality of Herbal Medicinal Products/Traditional Medicinal Products. - 6. Mukherjee, P.W. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals. Business Horizons Publishers, New Delhi, India, 2002. - Shinde M.V., Dhalwal K., Potdar K., Mahadik K. Application of quality control principles to herbal drugs. International Journal of Phytomedicine 1(2009); p. 4-8. - 8. WHO. Quality Control Methods for Medicinal Plant Materials, World Health Organization, Geneva, 1998. WHO. Guidelines for the Appropriate Use of Herbal Medicines. WHO Regional Publications, Western Pacific Series No 3, WHO Regional office for the Western Pacific, Manila, 1998. - 9. WHO. The International Pharmacopeia, Vol. 2: Quality Specifications, 3rd edn. World Health Organization, Geneva, 1981. - 10. WHO. Quality Control Methods for Medicinal Plant Materials. World Health Organization, Geneva, 1999. - WHO. WHO Global Atlas of Traditional, Complementary and Alternative Medicine. 2 vol. set. Vol. 1 contains text and Vol. 2, maps. World Health Organization, Geneva, 2005. - 12. WHO. Guidelines on Good Agricultural and Collection Practices (GACP) for Medicinal Plants. World Health Organization, Geneva, 2004. # BP 807 ET. COMPUTER AIDED DRUG DESIGN (Theory) 45 Hours Scope: This subject is designed to provide detailed knowledge of rational drug design process and various techniques used in rational drug design process. Objectives: Upon completion of the course, the student shall be able to understand - Design and discovery of lead molecules - The role of drug design in drug discovery process - · The concept of QSAR and docking - · Various strategies to develop new drug like
molecules. - The design of new drug molecules using molecular modeling software ## Course Content: UNIT-I 10 Hours # **Introduction to Drug Discovery and Development** Stages of drug discovery and development # Lead discovery and Analog Based Drug Design Rational approaches to lead discovery based on traditional medicine, Random screening, Non-random screening, serendipitous drug discovery, lead discovery based on drug metabolism, lead discovery based on clinical observation. Analog Based Drug Design:Bioisosterism, Classification, Bioisosteric replacement. Any three case studies **UNIT-II** 10 Hours ## Quantitative Structure Activity Relationship (QSAR) SAR versus QSAR, History and development of QSAR, Types of physicochemical parameters, experimental and theoretical approaches for the determination of physicochemical parameters such as Partition coefficient, Hammet's substituent constant and Tafts steric constant. Hansch analysis, Free Wilson analysis, 3D-QSAR approaches like COMFA and COMSIA. UNIT-III 10 Hours # Molecular Modeling and virtual screening techniques Virtual Screening techniques: Drug likeness screening, Concept of pharmacophore mapping and pharmacophore based Screening, Molecular docking: Rigid docking, flexible docking, manual docking, Docking based screening. De novo drug design. 9 Principal Vaagdevi Coilege of Rhatmacy, Hanamkonda, Warangal-506 001 UNIT-IV 08 Hours # Informatics & Methods in drug design Introduction to Bioinformatics, chemoinformatics. ADME databases, chemical, biochemical and pharmaceutical databases. UNIT-V 07 Hours Molecular Modeling: Introduction to molecular mechanics and quantum mechanics. Energy Minimization methods and Conformational Analysis, global conformational minima determination. # Recommended Books (Latest Editions) - 1. Robert GCK, ed., "Drug Action at the Molecular Level" University Prak Press Baltimore. - 2. Martin YC. "Quantitative Drug Design" Dekker, New York. - 3. Delgado JN, Remers WA eds "Wilson & Gisvolds's Text Book of Organic Medicinal & Pharmaceutical Chemistry" Lippincott, New York. - 4. Foye WO "Principles of Medicinal chemistry 'Lea & Febiger. - Koro Ikovas A, Burckhalter JH. "Essentials of Medicinal Chemistry" Wiley Interscience. - Wolf ME, ed "The Basis of Medicinal Chemistry, Burger's Medicinal Chemistry" John Wiley & Sons, New York. - 7. Patrick Graham, L., An Introduction to Medicinal Chemistry, Oxford University - Smith HJ, Williams H, eds, "Introduction to the principles of Drug Design" Wright Boston. - Silverman R.B. "The organic Chemistry of Drug Design and Drug Action" Academic Press New York. Vaagdevi College or Warangal-506 001 # BP808ET: CELL AND MOLECULAR BIOLOGY (Elective subject) 45 Hours ## Scope: - Cell biology is a branch of biology that studies cells their physiological properties, their structure, the organelles they contain, interactions with their environment, their life cycle, division, death and cell function. - This is done both on a microscopic and molecular level. - Cell biology research encompasses both the great diversity of single-celled organisms like bacteria and protozoa, as well as the many specialized cells in multi-cellular organisms such as humans, plants, and sponges. Objectives: Upon completion of the subject student shall be able to; - · Summarize cell and molecular biology history. - Summarize cellular functioning and composition. - · Describe the chemical foundations of cell biology. - Summarize the DNA properties of cell biology. - Describe protein structure and function. - Describe cellular membrane structure and function. - · Describe basic molecular genetic mechanisms. - Summarize the Cell Cycle #### Course content: Unit I 10Hours - a) Cell and Molecular Biology: Definitions theory and basics and Applications. - b) Cell and Molecular Biology: History and Summation. - c) Properties of cells and cell membrane. - d) Prokaryotic versus Eukaryotic - e) Cellular Reproduction - f) Chemical Foundations an Introduction and Reactions (Types) Unit II 10 Hours - a) DNA and the Flow of Molecular Information - b) DNA Functioning - c) DNA and RNA - d) Types of RNA - e) Transcription and Translation Unit III 10 Hours - a) Proteins: Defined and Amino Acids - b) Protein Structure Principal Phatiliary Vaagdevi College of Phatiliary Hanamkonda, Warangal-500 00 PV - c) Regularities in Protein Pathways - d) Cellular Processes - e) Positive Control and significance of Protein Synthesis #### **Unit IV** 08 Hours - a) Science of Genetics - b) Transgenics and Genomic Analysis - c) Cell Cycle analysis - d) Mitosis and Meiosis - e) Cellular Activities and Checkpoints Unit V 07 Hours - a) Cell Signals: Introduction - b) Receptors for Cell Signals - c) Signaling Pathways: Overview - d) Misregulation of Signaling Pathways - e) Protein-Kinases: Functioning # Recommended Books (latest edition): - W.B. Hugo and A.D. Russel: Pharmaceutical Microbiology, Blackwell Scientific publications, Oxford London. - Prescott and Dunn., Industrial Microbiology, 4th edition, CBS Publishers & Distributors, Delhi. - 3. Pelczar, Chan Kreig, Microbiology, Tata McGraw Hill edn. - 4. Malcolm Harris, Balliere Tindall and Cox: Pharmaceutical Microbiology. - 5. Rose: Industrial Microbiology. - 6. Probisher, Hinsdill et al: Fundamentals of Microbiology, 9th ed. Japan - 7. Cooper and Gunn's: Tutorial Pharmacy, CBS Publisher and Distribution. - 8. Peppler: Microbial Technology. - 9. Edward: Fundamentals of Microbiology. - 10. N.K. Jain: Pharmaceutical Microbiology, Vallabh Prakashan, Delhi - 11. Bergeys manual of systematic bacteriology, Williams and Wilkins- A Waverly company - 12. B.R. Glick and J.J. Pasternak: Molecular Biotechnology: Principles and Applications of RecombinantDNA: ASM Press Washington D.C. - 13. RA Goldshy et. al., : Kuby Immunology. Principal Principal Principal Pharmacy Magdevi College of Pharmacy Hanamkenda, Warangal: 806 001 # BP809ET. COSMETIC SCIENCE(Theory) 45Hours UNIT I 10Hours Classification of cosmetic and cosmeceutical products Definition of cosmetics as per Indian and EU regulations, Evolution of cosmeceuticals from cosmetics, cosmetics as quasi and OTC drugs Cosmetic excipients: Surfactants, rheology modifiers, humectants, emollients, preservatives. Classification and application Skin: Basic structure and function of skin. Hair: Basic structure of hair. Hair growth cycle. Oral Cavity: Common problem associated with teeth and gums. UNIT II 10 Hours Principles of formulation and building blocks of skin care products: Face wash, Moisturizing cream, Cold Cream, Vanishing cream and their advantages and disadvantages. Application of these products in formulation of cosmecuticals. Antiperspants & deodorants- Actives & mechanism of action. Principles of formulation and building blocks of Hair care products: Conditioning shampoo, Hair conditioner, anti-dandruff shampoo. Hair oils. Chemistry and formulation of Para-phylene diamine based hair dye. Principles of formulation and building blocks of oral care products: Toothpaste for bleeding gums, sensitive teeth. Teeth whitening, Mouthwash. UNIT III 10 Hours Sun protection, Classification of Sunscreens and SPF. Role of herbs in cosmetics: Skin Care: Aloe and turmeric Hair care: Henna and amla. Oral care: Neem and clove Analytical cosmetics: BIS specification and analytical methods for shampoo, skin- cream and toothpaste. UNIT IV 08 Hours. Principles of Cosmetic Evaluation:Principles of sebumeter, corneometer. Measurement of TEWL, Skin Color, Hair tensile strength, Hair combing properties Soaps, and syndet bars. Evolution and skin benfits. Principal Vaagdevi College of Phar Hanamkonda, Warangal-506 en l UNIT V 07 Hours Oily and dry skin, causes leading to dry skin, skin moisturisation. Basic understanding of the terms Comedogenic, dermatitis. Cosmetic problems associated with Hair and scalp: Dandruff, Hair fall causes Cosmetic problems associated with skin: blemishes, wrinkles, acne, prickly heat and body odor. Antiperspirants and Deodorants- Actives and mechanism of action # References - 1) Harry's Cosmeticology, Wilkinson, Moore, Seventh Edition, George Godwin. - 2) Cosmetics Formulations, Manufacturing and Quality Control, P.P. Sharma, 4th Edition, Vandana Publications Pvt. Ltd., Delhi. - 3) Text book of cosmelicology by Sanju Nanda & Roop K. Khar, Tata Publishers. Vaagdevi College of Pharmankonda, Warangal-506 # **BP810 ET. PHARMACOLOGICAL SCREENING METHODS** 45 Hours **Scope:** This subject is designed to impart the basic knowledge of preclinical studies in experimental animals including design, conduct and interpretations of results. # **Objectives** Upon completion of the course the student shall be able to, - Appreciate the applications of various commonly used laboratory animals. - Appreciate and demonstrate the various screening methods used in preclinical research - Appreciate and demonstrate the importance of biostatistics and researchmethodology - Design and execute a research hypothesis independently | Unit –I | 08 Hours | |--|----------| | Laboratory Animals: | | | Study of CPCSEA and OECD guidelines for maintenance, breeding | | | and conduct of experiments on laboratory animals, Common lab | | | animals: Description and applications of different species and strains | | | of animals. Popular transgenic and mutant animals. | | | Techniques for collection of blood and common routes of drug | | | administration in laboratory animals, Techniques of blood collection | | | and euthanasia. | | | Unit –II | 10 Hours | | Preclinical screening models | | | a. Introduction: Dose selection, calculation and conversions, | | | preparation of drug solution/suspensions, grouping of animals and | | | importance of sham negative and positive control groups. | | | Rationale for selection of animal species and sex for the study. | | | b. Study of screening animal models for | | | Diuretics, nootropics, anti-Parkinson's,
antiasthmatics, | | | Preclinical screening models: for CNS activity- analgesic, | | | antipyretic,anti-inflammatory, general anaesthetics, sedative and | | | hypnotics, antipsychotic, antidepressant, antiepileptic, | | | antiparkinsonism, alzheimer's disease | | | | | Vaagdevi College of Final Hanamkonda, Warangal: 998 991 | Unit –III | | |--|----------| | Preclinical screening models: for ANS activity, sympathomimetics, sympatholytics, parasympathomimetics, parasympatholytics, skeletal muscle relaxants, drugs acting on eye, local anaethetics | | | Unit –IV | | | Preclinical screening models: for CVS activity- antihypertensives, diuretics, antiarrhythmic, antidyslepidemic, anti aggregatory, coagulants, and anticoagulants Preclinical screening models for other important drugs like antiulcer, antidiabetic, anticancer and antiasthmatics. | | | Research methodology and Bio-statistics Selection of research topic, review of literature, research hypothesis and study design Pre-clinical data analysis and interpretation using Students 't' test | 05 Hours | | and One-way ANOVA. Graphical representation of data | | # Recommended Books (latest edition): - 1. Fundamentals of experimental Pharmacology-by M.N.Ghosh - 2. Hand book of Experimental Pharmacology-S.K.Kulakarni - 3. CPCSEA guidelines for laboratory animal facility. - 4. Drug discovery and Evaluation by Vogel H.G. - 5. Drug Screening Methods by Suresh Kumar Gupta and S. K. Gupta - Introduction to biostatistics and research methods by PSS Sundar Rao and J Richard Principal Vaagdevi College of Principal Hanamkonda, Warangal- # **BP 811 ET. ADVANCED INSTRUMENTATION TECHNIQUES** 45 Hours **Scope:** This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart advanced knowledge on the principles and instrumentation of spectroscopic and chromatographic hyphenated techniques. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing. Objectives: Upon completion of the course the student shall be able to - understand the advanced instruments used and its applications in drug analysis - · understand the chromatographic separation and analysis of drugs. - understand the calibration of various analytical instruments - · know analysis of drugs using various analytical instruments. ## **Course Content:** UNIT-I 10 Hours Nuclear Magnetic Resonance spectroscopy Principles of H-NMR and C-NMR, chemical shift, factors affecting chemical shift, coupling constant, Spin - spin coupling, relaxation, instrumentation and applications Mass Spectrometry- Principles, Fragmentation, Ionization techniques – Electron impact, chemical ionization, MALDI, FAB, Analyzers-Time of flight and Quadrupole, instrumentation, applications UNIT-II 10 Hours Thermal Methods of Analysis: Principles, instrumentation and applications of ThermogravimetricAnalysis (TGA), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC) X-Ray Diffraction Methods: Origin of X-rays, basic aspects of crystals, X-ray Crystallography, rotating crystal technique, single crystal diffraction, powder diffraction, structural elucidation and applications. UNIT-III 10 Hours Calibration and validation-as per ICH and USFDA guidelines Calibration of following Instruments Electronic balance, UV-Visible spectrophotometer, IR spectrophotometer, Principal aagdevi College of Pharmacy Hahamkonda, Warangal-596 991 ### Fluorimeter, Flame Photometer, HPLC and GC UNIT-IV 08 Hours Radio immune assay: Importance, various components, Principle, different methods, Limitation and Applications of Radio immuno assay Extraction techniques: General principle and procedure involved in the solid phase extraction and liquid-liquid extraction UNIT-V 07 Hours Hyphenated techniques-LC-MS/MS, GC-MS/MS, HPTLC-MS. #### **Recommended Books (Latest Editions)** - 1. Instrumental Methods of Chemical Analysis by B.K Sharma - 2. Organic spectroscopy by Y.R Sharma - 3. Text book of Pharmaceutical Analysis by Kenneth A. Connors - 4. Vogel's Text book of Quantitative Chemical Analysis by A.I. Vogel - 5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake - 6. Organic Chemistry by I. L. Finar - 7. Organic spectroscopy by William Kemp - 8. Quantitative Analysis of Drugs by D. C. Garrett - 9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi - 10. Spectrophotometric identification of Organic Compounds by Silverstein #### **BP 812 ET. DIETARY SUPPLEMENTS AND NUTRACEUTICALS** No. of hours:3 Tutorial:1 Credit point:4 #### Scope: This subject covers foundational topic that are important for understanding the need and requirements of dietary supplements among different groups in the population. #### Objective: This module aims to provide an understanding of the concepts behind the theoretical applications of dietary supplements. By the end of the course, students should be able to: - 1. Understand the need of supplements by the different group of people to maintain healthy life. - 2. Understand the outcome of deficiencies in dietary supplements. - 3. Appreciate the components in dietary supplements and the application. - 4. Appreciate the regulatory and commercial aspects of dietary supplements including health claims. UNIT I 07 hours - a. Definitions of Functional foods, Nutraceuticals and Dietary supplements. Classification of Nutraceuticals, Health problems and diseases that can be prevented or cured by Nutraceuticals i.e. weight control, diabetes, cancer, heart disease, stress, osteoarthritis, hypertension etc. - b. Public health nutrition, maternal and child nutrition, nutrition and ageing, nutrition education in community. - c. Source, Name of marker compounds and their chemical nature, Medicinal uses and health benefits of following used as nutraceuticals/functional foods: Spirulina, Soyabean, Ginseng, Garlie, Broccoli, Gingko, Flaxseeds UNIT II 15 hours Phytochemicals as nutraceuticals: Occurrence and characteristic features(chemical nature medicinal benefits) of following - a) Carotenoids- α and β-Carotene, Lycopene, Xanthophylls, leutin - b) Sulfides: Diallyl sulfides, Allyl trisulfide. - c) Polyphenolics: Reservetrol - d) Flavonoids- Rutin, Naringin, Quercitin, Anthocyanidins, catechins, Flavones - e) Prebiotics / Probiotics.: Fructo oligosaccharides, Lacto bacillum - f) Phyto estrogens: Isoflavones, daidzein, Geebustin, lignans - g) Tocopherols - h) Proteins, vitamins, minerals, cereal, vegetables and beverages as functional foods: oats, wheat bran, rice bran, sea foods, coffee, tea and the like. UNIT III 07 hours a) Introduction to free radicals: Free radicals, reactive oxygen species, production of free radicals in cells along reactions of free radicals on lipids, proteinsal Carbohydrates, in cells and called of Vaagdevi College of Pharmacy Hanamkenda, Warangal-5 b) Dietary fibres and complex carbohydrates as functional food ingredients.. UNIT IV 10 hours - a) Free radicals in Diabetes mellitus, Inflammation, Ischemic reperfusion injury, Cancer, Atherosclerosis, Free radicals in brain metabolism and pathology, kidney damage. muscle damage. Free radicals involvement in other disorders. Free radicals theory of ageing. - b) Antioxidants: Endogenous antioxidants enzymatic and nonenzymatic antioxidant defence, Superoxide dismutase, catalase, Glutathione peroxidase, Glutathione Vitamin C, Vitamin E, α-Lipoic acid, melatonin Synthetic antioxidants: Butylated hydroxy Toluene, Butylated hydroxy Anisole. c) Functional foods for chronic disease prevention UNIT V 06 hours - a) Effect of processing, storage and interactions of various environmental factors on the potential of nutraceuticals. - b) Regulatory Aspects; FSSAI, FDA, FPO, MPO, AGMARK. HACCP and GMPs on Food Safety. Adulteration of foods. - c) Pharmacopoeial Specifications for dietary supplements and nutraceuticals. #### References: - 1. Dietetics by Sri Lakshmi - 2. Role of dietary fibres and neutraceuticals in preventing diseases by K.T Agusti and P.Faizal: BSPunblication. - 3. Advanced Nutritional Therapies by Cooper. K.A., (1996). - 4. The Food Pharmacy by Jean Carper, Simon & Schuster, UK Ltd., (1988). - 5. Prescription for Nutritional Healing by James F.Balch and Phyllis A.Balch 2nd Edn., Avery Publishing Group, NY (1997). - 6. G. Gibson and C. williams Editors 2000 Functional foods Woodhead Publ.Co.London. - 7. Goldberg, I. Functional Foods. 1994. Chapman and Hall, New York. - 8. Labuza, T.P. 2000 Functional Foods and Dietary Supplements: Safety, Good Manufacturing Practice (GMPs) and Shelf Life Testing in *Essentials of Functional Foods* M.K. Sachmidl and T.P. Labuza eds. Aspen Press. - 9. Handbook of Nutraceuticals and Functional Foods, Third Edition (Modern Nutrition) - 10. Shils, ME, Olson, JA, Shike, M. 1994 Modern Nutrition in Health and Disease. Eighth edition. Lea and Febiger ## Semester VIII - Elective course on Pharmaceutical Product Development No of Hours: 3 Tutorial:1 Credit points:4 Unit-I Introduction to pharmaceutical product development, objectives, regulations related to preformulation, formulation development, stability assessment, manufacturing and quality control testing of different types of dosage forms Unit-II 10 Hours An advanced study of Pharmaceutical Excipients in pharmaceutical product development with a special reference to the following categories - i. Solvents and solubilizers - ii. Cyclodextrins and their applications - iii. Non ionic surfactants and their applications - iv. Polyethylene glycols and sorbitols - v. Suspending and emulsifying agents - vi. Semi solid excipients Unit-IH 10 Hours An
advanced study of Pharmaceutical Excipients in pharmaceutical product development with a special reference to the following categories - i. Tablet and capsule excipients - ii. Directly compressible vehicles - iii. Coat materials - iv. Excipients in parenteral and aerosols products - v. Excipients for formulation of NDDS Selection and application of excipients in pharmaceutical formulations with specific industrial applications Unit-IV 08 Hours Optimization techniques in pharmaceutical product development. A study of various optimization techniques for pharmaceutical product development with specific examples. Optimization by factorial designs and their applications. A study of QbD and its application in pharmaceutical product development. Unit-V 07 Hours Selection and quality control testing of packaging materials for pharmaceutical product development- regulatory considerations. #### Recommended Books (Latest editions) - 1. Pharmaceutical Statistics Practical and Clinical Applications by Stanford Bolton, CharlesBon; Marcel Dekker Inc. - 2. Encyclopedia of Pharmaceutical Technology, edited by James swarbrick, Third Edition, Informa Healthcare publishers. - 3. Pharmaceutical Dosage Forms, Tablets, Volume II, edited by Herbert A. Lieberman and Leon Lachman; Marcel Dekker, Inc. - The Theory and Practice of Industrial Pharmacy, Fourth Edition, edited by Roop kKhar, S P Vyas, Farhan J Ahmad, Gaurav K Jain; CBS Publishers and Distributors Pvt.Ltd. 2013. - 5. Martin's Physical Pharmacy and Pharmaceutical Sciences, Fifth Edition, edited by Patrick J. Sinko, Bl Publications Pvt. Ltd. - 6. Targeted and Controlled Drug Delivery, Novel Carrier Systems by S. P. Vyas and R. K.Khar, CBS Publishers and Distributors Pvt. Ltd, First Edition 2012. - 7. Pharmaceutical Dosage Forms and Drug Delivery Systems, Loyd V. Allen Jr., Nicholas B.Popovich, Howard C. Ansel, 9th Ed. 40 - Aulton's Pharmaceutics The Design and Manufacture of Medicines, Michael E. Aulton, 3rd Ed. - 9. Remington The Science and Practice of Pharmacy, 20th Ed. - 10. Pharmaceutical Dosage Forms Tablets Vol 1 to 3, A. Liberman, Leon Lachman andJoseph B. Schwartz - 11. Pharmaceutical Dosage Forms Disperse Systems Vol 1 to 3, H.A. Liberman, Martin, M.R and Gilbert S. Banker. - 12. Pharmaceutical Dosage Forms Parenteral Medication Vol 1 & 2, Kenneth E. Avis and H.A. Libermann. - 13. Advanced Review Articles related to the topics. # PHARMACEUTICS (MPH)MODERNPHARMACEUTICALANALYTICALTECHN IQUES(MPH101T)I SEMESTER #### **THEORY** 60HOURS ### Scope This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments deal tare Mass spectrometer, IR, HPLC, GC etc. ### **Objectives** Aftercompletion of coursestudent is able to know, Chemical □ sandExcipients $\begin{tabular}{l} \hline \end{tabular} The analysis of various drugs in single and combination do sage forms Theoretical and practical pract$ □ skills oftheinstruments UNIT-I 10HRS a. UV-Visible spectroscopy: Introduction, Theory, Laws, Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and solvent effect and Applications of UV-Visible spectroscopy. - b. IRspectroscopy: Theory, Modes of Molecular vibrations, Samplehandling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy - $c.\ Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.$ UNIT-II 8HRS MassSpectroscopy:Principle,Theory,InstrumentationofMassSpectroscopy,Differenttypesofioni zationlikeelectronimpact,chemical,field,FABandMALDI,APCI,ESI,APPIAnalyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules,Metastableions,IsotopicpeaksandApplicationsofMassspectroscopy. UNIT-III 12HRS Chromatography: Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution and applications of the following: a)Paperchromatographyb)ThinLayerchromatographyc)Ionexchangechromatographyd)Column chromatographye)Gaschromatography f)High PerformanceLiquidchromatography g) Affinitychromatography UNIT-IV 10HRS Electrophoresis:Principle,Instrumentation,Workingconditions,factorsaffectingsepa rationandapplications ofthefollowing: a)Paperelectrophoresisb)Gelelectrophoresisc)Capillaryelectrophoresisd)Zoneelectrophoresise)Movingboundaryelectrophoresisf)Isoelectricfocusing UNIT-V 10HRS a) Immunologicalassays:RIA(Radioimmunoassay),ELISA,Bioluminescenceassays. b) Thermaltechniques:DSC,DTA,TGA,Principle,Instrumentation,factorsaffecting,advantages and and and an advantages and Pharmaceutical applications. UNIT-VI 8HRS NMR Spectroscopy: Quantum numbers and their role in NMR, Principle, instrumentation, solventrequirements in NMR, Relaxation process, NMR signals invarious compounds. Briefoutline of FT-NMR and C¹³NMR, applications of NMR Spectroscopy. ### **REFERENCEBOOKS:** 1. SpectrometricIdentificationofOrganiccompounds-RobertMSilverstein,Sixthedition,JohnWiley&Sons,2004. 2. PrinciplesofInstrumentalAnalysis-Doglas ASkoog, F. JamesHoller,TimothyA. Nieman,5thedition,Easternpress,Bangalore,1998. 3. Instrumentalmethodsofanalysis-Willards,7thedition,CBSpublishers. - PracticalPharmaceuticalChemistry—BeckettandStenlake,VolII,4thedition,CBS Publishers,New Delhi,1997. - 5. OrganicSpectroscopy-WilliamKemp, 3rdedition, ELBS, 1991. - QuantitativeAnalysisofDrugs inPharmaceuticalformulation-PDSethi, 3rdEdition,CBSPublishers,NewDelhi,1997. - 7. Pharmaceutical Analysis-Modernmethods-Part B-JWMunson, Volume 11, Marcel Dekker Series # DRUGDELIVERYSYSTEMS (MPH102T) THEORY 60Hrs #### **SCOPE** This course is designed to impart knowledge on the area of advances in novel drug delivery systems. #### **OBJECTIVES** Upon completion of the course, students hall be able to understand The vario □ usapproachesfordevelopmentofnoveldrugdeliverysystems. Theoriteria forselectionofdrugsandpolymers forthedevelopmentofdeliveringsystem ☐ Theformulationandevaluation of Noveldrug delivery systems... UNIT-I 9Hrs Sustained Release (SR) and Controlled Release (CR) formulations: Introduction & basicconcepts, advantages/disadvantages, factors influencing, Physicochemical & biological approaches for SR/CR formulation, Mechanism of Drug Delivery from SR/CR formulation computation of desired release rate and dose for controlled release DDS, pharmacokinetic design for DDS—intermittent, zero order & first order release. UNIT-II 9Hrs CarriersforDrugDelivery:Polymers/co-polymersintroduction,classification,characterization, polymerization techniques, application in CDDS / NDDS, biodegradable &naturalpolymers. UNIT-III 9Hrs RateControlledDrugDeliverySystems:Types,Activation;ModulatedDrugDeliverySystems; Mechanically activated, pH activated, Enzyme activated, and Osmotic activatedDrugDeliverySystemsFeedbackregulatedDrugDeliverySystems;Principles&Fundam entals. UNIT-IV 9Hrs Studyof Various DDS: Concepts, design, formulation & evaluation of controlled release or al DDS, GRDDS, Mucoadhesive and buccal DDS, colon specific, liquids ustained release systems, Ocular delivery systems. UNIT-V 9Hrs Transdermal Drug Delivery Systems: Structure of skin and barriers, Penetration enhancers, Transdermal Drug Delivery Systems, Formulation and evaluation. UNIT-VI 9Hrs Protein and Peptide Delivery: Barriers for protein delivery. Formulation and Evaluation ofdelivery systems of proteins and other macromolecules. UNIT-VII 9Hrs Personalized Medicine: Introduction, Definition, Pharmacogenetics, Categories of Patients for Personalized Medicines, Customized drug delivery systems, Bioelectronic Medicines, 3D printing of pharmaceuticals, Telepharmacy. 6Hrs #### REFERENCEBOOKS: - YW.Chien, Novel Drug Delivery Systems, 2ndedition, revised and expanded, Marcel Dekker, Inc., New York, 1992. - 2. Robinson, J. R., LeeV.H. L, Controlled Drug Delivery Systems, Marcel Dekker, Inc., New York, 1992. - 3. Encyclopediaofcontrolleddelivery, Editor-Edith Mathiowitz, Published by Wiley Interscience Publication, John Wiley and Sons, Inc, New York! Chichester/Weinheim - 4. N.K.Jain, Controlled and Novel Drug Delivery, CBSPublishers & Distributors, New Delhi, Firstedition 1997 (reprintin 2001). - 5. S.P.VyasandR.K.Khar,ControlledDrugDelivery-conceptsandadvances,Vallabh Prakashan,New Delhi,Firstedition2002 #### **JOURNALS** - 1. IndianJournalofPharmaceuticalSciences(IPA) - 2. Indiandrugs(IDMA) - 3. Journalofcontrolledrelease(ElsevierSciences)desirable - 4. DrugDevelopmentandIndustrialPharmacy(Marcel&Decker)desirable # MODERNPHARMACEUTICS (MPH103T) THEORY 60HRS Scope Coursedesignedtoimpartadvancedknowledgeandskillsrequiredtolearnvariousaspectsandconceptsa tpharmaceuticalindustries. ### **Objectives** | Uponcompletionofthecourse, students hall be able to understand Thee | |--| | ☐ lementsofpreformulationstudies. | | lem:lem:lem:lem:lem:lem:lem:lem:lem:lem: | | ☐ IndustrialManagementandGMPConsiderations. | | ☐ Optimization Techniques & Pilot Plant Scale Up | | ☐ TechniquesStabilityTesting,sterilizationprocess&packagingofdosageforms | UNIT-I 14Hrs a. Preformulation Concepts – Drug Excipient interactions - different methods, kinetics ofstability, Stability testing. Theories of dispersion and pharmaceutical Dispersion (Emulsionand Suspension, SMEDDS) preparation and stability. Large and small volume parental –physiological and formulation consideration, Manufacturing and evaluation. b. OptimizationtechniquesinPharmaceuticalFormulation:Conceptandparametersofoptimization,Optimizationtechniquesinpharmaceuticalformulationandprocessing.Statisticaldesign,Responsesurfacemethod,Contourdesigns,Factorialdesignsandapplicationinformulation UNIT-II 10Hrs Validation:IntroductiontoPharmaceuticalValidation,Scope&meritsandtypesofValidation, Validation and calibration ofMaster plan, ICH & WHO guidelines
for calibrationand validation of equipments(Tablet machine, Coating pan, auto clave, FBD, aseptic room),Validationofspecificdosageform(solidsandliquid).Governmentregulation,Manufacturin gProcessModel,DQ,IQ,OQ &PQoffacilities. UNIT-III · 10Hrs Objectives and policies of currentgood Industrial Management: manufacturing practices, layout of buildings, services, equipments and their maintenance. Productio management, organization, materials Production nmanagement: transportation, inventory management and control, production planning and control, Sales forecasting, budget and cost control, in dustrial and personal relationship. Concept of Total Quality Manner and the control of controlnagement. UNIT-IV 10Hrs Compression, compaction and consolidation: Physics of tablet compression, Basic principles of interaction, compression and consolidation, effect of load, friction, distribution of forces incompaction, force volume relationship, Heckel plots, compaction profile, measurement of compression with straingauge. UNIT-V 10Hrs Dissolutiontesting:studyoffactorsinfluencingdissolution,Dissolutiondataanalysismathematical models ofdrugrelease (HiguchiandPeppas) UNIT-VI 6Hrs Linearity(Regression) Concept of significance, Standard deviation, standard error Chisquaretest, students T-test, ANOVA (one way and two way) testand Pvalue. #### REFERENCEBOOKS: - 1. TheoryandPracticeofIndustrialPharmacyByLachmannandLibermann - 2. Pharmaceuticaldosageforms: Tablets Vol. 1-3 by Leon Lachmann. - 3. PharmaceuticalDosageforms:Dispersesystems,Vol,1-2;ByLeonLachmann. - $4.\ Pharmaceutical Dosage forms: Parenter almedications Vol. 1-2; By Leon Lachmann.$ - 5. ModernPharmaceutics:ByGillbertandS.Banker. - 6. Remington's Pharmaceutical Sciences. - 7. AdvancesinPharmaceuticalSciencesVol.1-5;ByH.S.Bean&A.H.Beckett. - 8. PhysicalPharmacy; ByAlfredmartin - 9. Bentley's Textbook of Pharmaceutics by Rawlins. - 10. GoodmanufacturingpracticesforPharmaceuticals:Aplanfortotalqualitycontrol,Secondedition;BySidneyH.Willig. - 11. QualityAssuranceGuide;ByOrganizationofPharmaceuticalproducersofIndia. - 12. Drugformulationmanual;ByD.P.S.KohliandD.H.Shah.Easternpublishers,NewDelhi. - 13. HowtopracticeGMPs; ByP.P.Sharma. Vandhana Publications, Agra. - 14. PharmaceuticalProcessValidation; ByFra.R.BerryandRobertA.Nash. - 15. PharmaceuticalPreformulations; ByJ.J.Wells. - 16. Appliedproductionandoperationsmanagement; By Evans, Anderson, Sweeney and Williams. - 17. EncyclopaediaofPharmaceuticaltechnology,VolI-III. # IPR AND REGULATORYAFFAIRS (MPH104T) THEORY 60Hrs Scope Course designed to impartadvanced knowledge and skills required to learn the conceptofgeneric drug and their development, various regulatory filings in different countries, differentphases of clinical trials and submitting regulatory documents: filing process of IND, NDA and ANDA ☐ Toknowtheapprovalprocess☐ Toknowthechemistry,manufacturingcontrolsandtheirregulatoryimportanceTole □ arnthedocumentationrequirements ☐ Tolearntheimportance **Objectives:** Upon completion of the course, it is expected that the students will be able to understand The Conceptual to the course, it is expected that the students will be able to understand The Conceptual to the course, it is expected that the students will be able to understand The Conceptual to the course, it is expected that the students will be able to understand The Conceptual to the course, it is expected that the students will be able to understand The Conceptual to the course, it is expected that the students will be able to understand The Conceptual to the course, it is expected that the students will be able to understand The Conceptual to the course, it is expected that the students will be able to understand The Conceptual to the course of □ tsofinnovatorandgeneric $\ \ \, \sqcap drugs, drug development Process The Regulatory guidance's and guide lines for filing and appr$ $\label{lem:condition} \ \ \, \square \ \, oval process Preparation of Dossiers and their submission to regulatory agencies in different could be a submission to regulatory agencies in different could be a submission to regulatory agencies and their the are also agree and the regulatory agencies agencing a supplication agencies and the regulatory agencies agencies a$ ratriesPostapproval regulatory requirements for actives and drug $\label{lem:condition} \ \ \, \Gamma \ \, products Submission of global documents in CTD/eCTD for mats Clinical trials requirements for the condition of condi$ r orapprovalsforconductingelinicaltrials ☐ Pharmacovigilenceandprocessofmonitoring inclinicaltrials. UNIT-I 10Hrs Drugproductdevelopment: Active pharmaceutical ingredients, drugmaster file (DMF) and impurities. Generic product development: Introduction, Hatch-Waxman act and amendments, GUDUFA, ANDA (505j), ANDA approval process. New drug application (505B1 and 505B2). NDA approval process including IND. Scale upand postap proval changes (SUPAC). Bioequiva lence and Bioavailability, different types of studies for drug product approval. UNIT-II 10Hrs ICH- Guidelines of ICH - Q7 to Q11, M9. Clinical Trials. HIPPA - new, requirements toclinical study process, Parmacovigilance safety monitoring inclinical trials. UNIT-III 10Hrs ANDA for generic drugs ways and means of US registration for foreign drugs. CMC, Postapprovalregulatoryaffairs.Regulationforcombinationproducts,medicaldevices&Biosimilars. UNIT-IV 10Hrs BriefintroductiontoCDSCO,WHO,USFDA,EMEA,TGA,MHRA,MCC,ANVISA. UNIT-V 10Hrs Definitions, Need for Patenting, Types of Patents, Conditions to be satisfied by an invention to be Patentable, introduction to patent and patent search. Parts of Patent. Filing of patents. The essential elements of patent. Guidelines for preparation of laboratory notebook, Non-obviousnessin patent. UNIT-VI 10Hrs Copy right, Trademark, Geographical indication acts, Patentlitigation, 180 days marketexclusivityandDoctrineofequivalents. #### REFERENCEBOOKS - GenericDrugProductDevelopment,SolidOralDosageforms,LeonShargeland IsaderKaufer,MarcelDekkerseries,Vol.143 - 2. The Pharmaceutical Regulatory Process, Second Edition Edited by IraR. Berry and Robert P. Martin, Drugs and the Pharmaceutical Sciences, Vol. 185, Informa Healthcare Publishers. - 3. NewDrugApprovalProcess:AcceleratingGlobalRegistrationsByRichardAGuarino, MD,5thedition,Drugs andthePharmaceuticalSciences,Vol.190. - 4. Guidebookfordrugregulatorysubmissions/SandyWeinberg.ByJohnWiley&Sons.Inc. - 5. FDAregulatoryaffairs:aguideforprescriptiondrugs,medicaldevices,andbiologics/editedByDo uglas J.Pisano,DavidMantus. - 6. ClinicalTrialsandHumanResearch:APracticalGuidetoRegulatoryComplianceByFayA. RozovskyandRodneyK.Adams - 7. www.ich.org/ - 8. www.fda.gov/ - 9. europa.eu/index en.htm - 10. https://www.tga.gov.au/tga-basics # MODERNPHARMACEUTICALANALYTICALTECHNIQUESPRACTICALS (MPH105P) - 1. AnalysisofpharmacopoeialcompoundsandtheirformulationsbyUVVisspectrophotometer(Minimum4Experiments) - 2. SimultaneousestimationofmulticomponentcontainingformulationsbyUV/HPLCspectrophoto metry(Minimum4Experiments) - 3. ExperimentsbasedonHPLC - 4. ExperimentsbasedonGasChromatography - 5. Estimationofriboflavin/quininesulphatebyfluorimetry - 6. Estimationofsodium/potassiumbyflamephotometry #### PHARMACEUTICS-I PRACTICALS(MPH106P) - 1. Tocarryoutpreformulationstudiesofdrugs, effectofsurfactantsandpHonthesolubilityofdrugs, compatibilityevaluationofdrugs and excipients by DSC and FTIR. - 2. Formulation and evaluation of SR/CRT ablets and compare In-Vitro dissolution profile of SR/CRM arketed formulation. - 3. FormulationandevaluationosmoticallycontrolledDDS - 4. Preparationandevaluation of Floating DDS-hydrodynamically balanced DDS - 5. Formulationandevaluation of Mucoadhesive tablets. - 6. Formulationandevaluation of transdermal patches. - 7. StabilitystudiesofdrugsinsolutionsandsoliddosageformsaccordingtoICHguidelines. - 8. Tostudytheeffectofcompressionalforce,particlesizeand bindersontabletsdisintegrationtime and dissolution of atablet. - 9. TostudyMicromeriticpropertiesofpowdersandgranulation. - 10. AnalysisofdrugreleasefromCRtablets,Higuchi,Peppasplot,zeroorder.Similarityfactordeter mination - 11. Preparationandevaluation of different polymeric membranes. - 12. Validation of Tabletmachine, coating pan, dryers, autoclave ## SEMESTER-II ADVANCEDBIOPHARMACEUTICS&PHARMACOKINETICS(MPH201T) THEORY 60Hrs | Sco | ne | |---------------|----| | $\sim \sim 0$ | ~~ | This course is designed to impart knowledge and skills necessary for dose calculations, doseadjustmentsandtoapplybiopharmaceuticstheoriesinpracticalproblemsolving. Basictheoretical discussions of the principles of biopharmaceutics and pharmacokinetics are provided to help the students' to clarify the concepts. Objectives I | / | ojectives | |---|--| | J | oncompletion of this course it is expected that students will be able understand, The b | | Ĵ | asicconceptsinbiopharmaceuticsandpharmacokinetics. | | | Theuserawdataandderivethepharmacokineticmodelsandparametersthebestdescribetheprocesso | | | fdrugabsorption, distribution, metabolismandelimination. | | 7 | The critical evaluation of biopharmaceutic studies involving drugproduct equivalency. The designande valuation of biopharmaceutic studies involving drugproduct equivalency. The designande valuation of biopharmaceutic studies involving drugproduct equivalency. The designande valuation of biopharmaceutic studies involving drugproduct equivalency. | | j | onofdosageregimensofthedrugsusingpharmacokineticand biopharmaceuticparameters. | | | Thepotentialclinicalpharmacokineticproblemsandapplicationofbasicsofpharmacokinetic | | | | UNIT-I 10Hrs
DrugAbsorptionfrom theGastrointestinal Tract: Gastrointestinal tract, Mechanism of drugabsorption,Factorsaffectingdrugabsorption,pH- partitiontheoryofdrugabsorption.Formulationandphysicochemicalfactors:Dissolutionrate,Dissolut ionprocess,Noyes-Whitneyequation and drug dissolution, Factors affecting the dissolution rate. Gastrointestinal absorption:role of the dosage form: Solution (elixir, syrup and solution) as a dosage form ,Suspension as a do sage form, Capsuleas a do sage form, Table tas a do sage form, Dissolution methods ,Formulation and processing factors, Correlation of in vivo data with in vitro dissolution data. Transportmodel: Permeability-Solubility- ChargeStateandthepHPartitionHypothesis,Properties of the Gastrointestinal Tract (GIT), pH Microclimate Intracellular pH Environment,Tight-JunctionComplex. UNIT-II 10Hrs Biopharmaceutic considerations in drug product design and In Vitro Performance: Introduction, biopharmaceutic factors affecting drug bioavailability, rate-limiting steps in drug absorption, physicochemical nature of the drug, formulation factors affecting drug product performance, invitro:dissolutionanddrugreleasetesting,compendialmethodsofdissolution,alternativemethods of dissolution testing, meeting dissolution requirements, problems of variable controllindissolution testing performance of drug products. In vitro—in vivo correlation, dissolution profile comparisons. UNIT-III 10Hrs Pharmacokinetics: Basic considerations, pharmacokinetic models, compartment modeling:one compartment model- IV bolus, IV infusion, extra-vascular. Multi compartment model:twocompartment-modelinbrief. UNIT-IV 10Hrs Non-linearpharmacokinetics:causeofnon-linearity, Michaelis—Mentenequation, estimation of Kmax and Vmax. Noncompartmental Pharmacokinetics- statistical momenttheory and physiological pharmacokinetic model. Altered pharmacokinetic sin renal and he patic diseases. Drug interactions: introduction, the effect of protein binding on interactions, the effect of tissue-binding on interactions, cytochrome p450-based drug interactions, and drug interactions linked to transporters. UNIT-V 10Hrs DrugProductPerformance,InVivo:BioavailabilityandBioequivalence:drugproductperformance purpose bioavailability studies, relative absolute availability. Methodsforassessingbioavailability, bioequivalencestudies, designandevaluation of bioequivale ncestudies, studydesigns, crossoverstudydesigns, evaluation of the data, bio equivalence example, studysubmissionand drug review process. Biopharmaceuticsclassificationsystem, methods. generic Permeability: In-vitro. in-situ and In-vivo methods. biologics (biosimilardrugproducts), clinical significance of bioequivalence studies, special concerns in bioav ailabilityandbioequivalence studies, generic substitution. UNIT-VI 10Hrs ApplicationofPharmacokinetics:ChronoPharmacokinetics,Modified-ReleaseDrugProducts, Targeted Drug Delivery Systems and Biotechnological Products. Introduction toPharmacokineticsandpharmacodynamicsofbiotechnology drugsProteinsandpeptides,Monoclonalantibodies,Oligonucleotides,Vaccines(immunotherapy),Genetherapies.10Hrs #### **REFERENCEBOOKS:** - 1. BiopharmaceuticsandClinicalPharmacokineticsbyMiloGibaldi,4thedition,Philadelphia,Leaa ndFebiger,1991 - 2. BiopharmaceuticsandPharmacokinetics,A.Treatise,D.M.BrahmankarandSunilB.Jaiswal., VallabPrakashan,Pitampura,Delhi - 3. AppliedBiopharmaceuticsandPharmacokineticsbyShargel.LandYuABC,2ndedition, ConnecticutAppletonCenturyCrofts,1985 - 4. TextbookofBiopharmaceuticsandPharmacokinetics,Dr.ShobhaRaniR.Hiremath,PrismBook - 5. PharmacokineticsbyMiloGibaldiandD.Perrier,2ndedition,MarcelDekkerInc.,NewYork,1982 - 6. CurrentConceptsinPharmaceuticalSciences:Biopharmaceutics,Swarbrick.J,LeaandFebiger, Philadelphia,1970 - 7. ClinicalPharmacokinetics,ConceptsandApplications3rdeditionbyMalcolmRowlandandTho m~ N.Tozer,Lea andFebiger,Philadelphia,1995 - 8. Dissolution, Bioavailability and Bioequivalence, Abdou. H.M, Mack Publishing Company, Pennsylvania 1989 - 9. BiopharmaceuticsandClinicalPharmacokinetics,AnIntroduction,4thedition,revisedand expandebyRobert.E.Notari,MarcelDekkerInc,New YorkandBasel,1987. - 10. BiopharmaceuticsandRelevantPharmacokineticsbyJohn.GWagnerandM.Pemarowski,1stedit ion,DrugIntelligence Publications,Hamilton,Illinois,1971. - 11. Encyclopedia of Pharmaceutical Technology, Vol 13, James Swarbrick, James G. Boylan, Marcel Dekker Inc, New York, 1996. - 12. BasicPharmacokinetics,1stedition,SunilSJambhekarandPhilipJBreen,pharmaceutical press,RPSPublishing,2009. - 13. Absorption and Drug Development-Solubility, Permeability, and Charge State, Alex Avdeef, John Wiley & Sons, Inc, 2003. ## MOLECULAR PHARMACEUTICS (NANOTECHNOLOGY&TARGETED DDS)(NTDS) (MPH202T) THEORY 60Hrs Scope This course is designed to impart knowledge on the area of advances in novel drug delivery systems. **Objectives** Upon completion of the course students hall be able to understand The various approach □ esfor $\ \ \, \sqcap \ \, development of novel drug delivery systems. The criteria for selection of drugs and part of the content th$ $\label{eq:continuous} \ \ \, \Gamma \ \, olymers for the development of NTDS The formulation and evaluation of novel drug delivery systems.$ UNIT-I 9Hrs TargetedDrugDeliverySystems:Concepts,Eventsandbiologicalprocessinvolvedindrug targeting.TumortargetingandBrainspecificdelivery. UNIT-II 9Hrs TargetingMethods:introduction,types,preparationandevaluationofNanoParticles&Liposomes UNIT-III 9Hrs Micro Capsules / Micro Spheres: Types, preparation and evaluation, Monoclonal Antibodies; preparation and application, preparation and application of Niosomes, Aquasomes, Phytosomes, Electrosomes. UNIT-IV 9Hrs PulmonaryDrugDeliverySystems:Aerosols,propellents,ContainersTypes,preparationandevaluation,Intra NasalRoute Deliverysystems;Types,preparationandevaluation. UNIT-V 9Hrs Nucleic acid based therapeutic delivery system: Gene therapy, introduction (ex-vivo & invivo gene therapy). Potentialtarget diseases for gene therapy(inherited disorder and cancer). Geneexpression systems (viral and nonviral gene transfer). Liposomal gene delivery systems. Biodistribution and Pharmacokinetics. Knowledge of therapeutic antisense molecules and aptamersas drugs of future. UNIT-VI 8Hrs Vaccine delivery systems: Vaccines, uptake of antigens, single shot vaccines, mucosal andtransdermaldeliveryofvaccines. **UNIT-VII** 7Hrs StudyofcommercialformulationsDOXIL,RISPERDALCONSTA,LUPRONDEPOT,INVE GASUSTENNA,andLANCOME. #### REFERENCEBOOKS - 1. YW.Chien,NovelDrugDeliverySystems,2ndedition,revisedandexpanded,Marcel Dekker,Inc.,New York,1992. - 2. S.P.Vyas and R.K.Khar, Controlled Drug Delivery concepts and advances, Vallabh Prakashan, New Delhi, First edition 2002. - 3. N.K.Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, New Delhi, Firste dition 1997 (reprintin 2001). # PHARMACEUTICALPRODUCTIONTECHNOLOGY (MPH203T) THEORY 60HRS Scope This course is designed to impart knowledge and skills necessary to train the students to be on parwith the routine of Industrial activities in Production Objectives Oncompletionofthiscourseitisexpectedthatstudentswillbeabletounderstand,H andlethe scheduledactivitiesina Pharmaceuticalfirm. ☐ Managetheproductionoflargebatchesofpharmaceuticalformulations. UNIT-I 10Hrs a) Improved Tablet Production: Tablet production process, unit operation improvements, granulation and pelletization equipments, continuous and batch mixing, rapidmixing granulators, rotagranulators, spheronizers and marumerisers, and otherspecialized granulation and drying equipments. Problems encountered. b) Coating Technology: Process, equipments, particle coating, fluidized bed coating, application te chniques.Problems encountered. UNIT-II 9Hrs ParenteralProduction:Plant layout, design area planning & environmentalcontrol, wallandfloor treatment, fixtures and machineries, change rooms, personnel flow, utilities & utilities equipment location, engineering and maintenance. UNIT-III 9Hrs Lyophilization & Spray drying Technology: Principles, process, freeze-drying and spraydrying equipments. UNIT-IV 9Hrs CapsuleProduction:Productionprocess,advancesincapsulemanufacturingandfillingmachinesforhard andsoftgelatincapsules.Layoutand problemsencountered. UNIT-V 9Hrs Disperse Systems Production: Production processes, applications of mixers, mills, disperseequipments including fine solids dispersion, problems encountered. UNIT-VI 7Hrs Packaging Technology: Typesofpackaging materials, machinery (strip and blister), labeling, package printing for different dosage forms. UNIT-VII 7Hrs AirHandlingSystems:StudyofAHUs,humidity&temperaturecontrol,airfiltrationsystems, dust collectors. Water Treatment Process: Techniques and maintenance – RO, DM,ultra-filtration,WFI. #### REFERENCEBOOKS: - $1. \quad The Theory \& Practice of Industrial Pharmacy, L. Lachman, Varghese Publ, Bombay.$ - 2. ModernPharmaceuticsbyBanker,Vol72,MarcelDekker,NY. - 3. PharmaceuticalDosageForms, Vol1, 2,3 by Lachman, Lieberman, MarcelDekker, NY. - 4. PharmaceuticalDosageForms,Parentralmedications,Vol1,2byK.E.Avis,MarcelDekker,NY. - 5. Pharmaceutical Production Facilities, designand applications, by G.C. Cole, Taylor and Francis. - 6. DispersedSystemVol1,2,3byLachman,Lieberman,MarcelDekker,NY. - 7. ProductdesignandtestingofpolymericmaterialsbyN.P.Chezerisionoff. - 8. PharmaceuticalProjectManagement, T. Kennedy, Vol86, MarcelDekker, NY. - 9. PackagingPharmaceuticalandHealthCare,H.Lockhard. - 10. QualityControlofPackagingMaterialsinPharmaceuticalIndusty,.Kharburn,MarcelDekker, NY. - 11. Freezedrying /LyophilizationofPharmaceuticals&BiologicalProducts,L.Ray,Vol96,MarcelDekker,N - $12. \ Tablet Machine Instrumentation In Pharmaceuticals, PRW att, Ellis Horwoods, UK.$ # COSMETICSAND COSMECEUTICALS (MPH 204T) THEORY 60Hrs #### Scope This course is designed to impart knowledge and skills necessary for the fundamental need for cosmetic and cosmec ceutical products. **Objectives**
Uponcompletion of the course, the students shall be able to understand Keyi ngredientsusedincosmeticsandcosmeceuticals. □ chnologiesinthemarket ∇ariouskevingredientsandbasicsciencetodevelopcosmeticsandcosmeceuticals ☐ ScientificknowledgetodevelopcosmeticsandcosmeceuticalswithdesiredSafety,stability,andeffic acy. UNIT-I 10Hrs Cosmetics – Regulatory: Definition of cosmetic products as per Indian regulation. Indian regulatory requirements for labeling of cosmetics Regulatory provisions relating to import of cosmetics. Misbranded and spurious cosmetics. Regulatory provisions relating tomanufacture of cosmetics – Conditions for obtaining license, prohibition of manufacture and sale of certain cosmetics, loanlicense, offences and penalties. UNIT-II 10Hrs Cosmetics - Biological aspects: Structure of skin relating to problems like dry skin, acne, pigmentation, prickly heat, wrinkles and body odor. Structure of hair and hair growth cycle. Common problems associated with oral cavity. Cleansing and care needs for face, eye lids, lips, hands, feet, nail, scalp, neck, body and under-arm. UNIT-III 10Hrs FormulationBuildingblocks:Buildingblocksfordifferentproductformulationsofcosmetics/cosm eceuticals.Surfactants-Classificationandapplication.Emollients,rheological additives:classification and application.Antimicrobial used as preservatives, their merits and demerits. Factors affecting microbial preservative efficacy. Building blocksforformulation of a moisturizing cream, vanishing cream, coldcream, shampoo and to oth past e. Soaps and syndetbars. UNIT-IV 10Hrs Perfumes; Classification of perfumes. Perfume in gredients listed as allergens in EU regulation. Controversial in gredients: Parabens, formal dehydeliberators, dioxane. Principal Princi UNIT-V 10Hrs Design of cosmeceutical products: Sun protection, sunscreens classification and regulatoryaspects. Addressing dry skin, acne, pigmentation, prickly heat, wrinkles, body odor,dandruff,dentalcavities,bleedinggums,mouthodorandsensitiveteeththroughcosmeceutical formulations. UNIT-VI 10Hrs Herbal Cosmetics: Herbal ingredients used in Hair care, skin care and oral care. Review ofguidelines for herbal cosmetics by private bodies like cosmos with respect to preservatives, emollients, foaming agents, emulsifiers and rheology modifiers. Challenges in formulatingherbalcosmetics. #### REFERENCEBOOKS - 1. Harry's Cosmeticology. 8th edition. - 2. Poucher'sperfumecosmeticsandSoaps,10thedition. - 3. Cosmetics-Formulation, Manufacture and quality control, PP. Sharma, 4th edition - 4. HandbookofcosmeticscienceandTechnologyA.O.Barel, M.PayeandH.I.Maibach. 3rdedition - 5. CosmeticandToiletriesrecentsupplierscatalogue. - 6. CTFAdirectory. # ADVANCED BIOPHARMACEUTICS AND PHARMACOKINETICSPRACTICALS(MPH205P) - 1. ImprovementofdissolutioncharacteristicsofslightlysolubledrugbySoliddispersiont echnique. - 2. Comparisonofdissolutionoftwodifferentmarketedproducts/brands - 3. Comparisonofdiffusionstudiesoftwodifferentmarketedproducts/brands - 4. Proteinbindingstudiesofahighlyproteinbounddrug&poorlyproteinbounddrug - 5. Calculation of all Pharmacokinetic parameters from the I.V. Bolus Data. - CalculationofallPharmacokineticparametersfromtheUrinaryDataofI.V. BolusInjection. - 7. Calculation of all Pharmacokinetic parameters from the I.V. Infusion Data. - 8. CalculationofallPharmacokineticparametersfromtheExtravascularData ResidualMethod. - CalculationofallPharmacokineticparametersfromtheExtravascularData-WagnerNelsonmethod - 10. BioavailabilitystudiesofParacetamol(Animal). # PHARMACEUTICS-IIPRACTICALS(MPH206P) - 1. Formulationandevaluationoftablets - 2. Formulationandevaluationofcapsules - 3. Formulationandevaluationofinjections - 4. Formulationandevaluationofemulsion - 5. Formulationandevaluationofsuspension. - 6. Formulationandevaluation of enteric coating tablets. - 7. Preparationandevaluationofafreezedriedformulation. - 8. Preparationandevaluation of aspraydried formulation. - Tostudytheeffectoftemperaturechange,nonsolventaddition,incompatiblepolymera dditioninmicrocapsules preparation - 10. Preparationandevaluation of Alginate beads - 11. Formulationandevaluationofgelatin/albuminmicrospheres - 12. Formulationandevaluationofliposomes/niosomes - 13. Formulationandevaluationofspherules - 14. ToaddressDryskin,acne,blemish,Wrinkles,bleedinggumsanddandruff - 15. FormulationandEvaluationofcosmeticproductspertainingtoskin,hairandteeth. ## INDUSTRIALPHARMACY (MIP)MODERNPHARMACEUTICALANALYTICALTECHNIQUE S(MIP101T) THEORY 60HOURS Scope This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are Mass spectrometer, IR, HPLC, GC etc. **Objectives** Aftercompletion of course student is able to know, Chemical □ sandExcipients ☐ Theanalysis of various drugs in single and combination do sage forms Theoretical and practical □ skills oftheinstruments UNIT-I 10Hrs a. UV-Visiblespectroscopy:Introduction,Theory,Laws,InstrumentationassociatedwithUV-Visible spectroscopy, Choice of solvents and solvent effect and Applications of UV-Visiblespectroscopy. - b. IRspectroscopy:Theory,ModesofMolecularvibrations,Samplehandling,Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affectingvibrationalfrequencies andApplicationsofIR spectroscopy - c. Spectroflourimetry: TheoryofFluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer. UNIT-II 8Hrs MassSpectroscopy:Principle,Theory,InstrumentationofMassSpectroscopy,Differenttypesofionizat ion like electron impact, chemical, field, FAB and MALDI, APCI, ESI, APPIAnalyzersof Quadrupole and Time of Flight, Mass fragmentation and its rules,Metastableions,IsotopicpeaksandApplicationsofMassspectroscopy. UNIT-III 12Hrs Chromatography:Principle,apparatus,instrumentation,chromatographicparameters,factorsaffectin gresolutionandapplications ofthefollowing: a)Paperchromatographyb)ThinLayerchromatographyc)lonexchangechromatographyd)Column chromatography e)Gaschromatography f)HighPerformanceLiquidchromatography g)Affinitychromatography. UNIT-IV 12Hrs Electrophoresis: Principle, Instrumentation, Working conditions, factorsaffecting separationandapplications of the following:a)Paperelectrophoresisb)Gelelectrophoresisc)Capillaryelectrophoresisd)Zoneelectrophoresise) Movingboundaryelectrophoresisf)Isoelectricfocusing UNIT-V 10Hrs a) Immunologicalassays:RIA(Radioimmunoassay),ELISA,Bioluminescenceassays. b) Thermaltechniques:DSC,DTA,TGA,Principle,Instrumentation,factorsaffecting,advantages and disadvantages and Pharmaceutical applications. UNIT-VI 8Hrs NMRSpectroscopy:Quantum numbersandtheirroleinNMR,Principle,instrumentation,solvent requirements in NMR, Relaxation process, NMR signals in various compounds.Briefoutline ofFT-NMR andC¹³NMR,applicationsofNMRSpectroscopy. #### REFERENCEBOOKS: 1. SpectrometricIdentificationofOrganiccompounds-RobertMSilverstein,Sixthedition,JohnWiley&Sons,2004. 2. PrinciplesofInstrumentalAnalysis -Doglas ASkoog, F. JamesHoller,TimothyA. Nieman,5thedition,Easternpress,Bangalore,1998. 3. Instrumentalmethodsofanalysis-Willards,7thedition,CBSpublishers. - 4. PracticalPharmaceuticalChemistry–BeckettandStenlake,VolII,4thedition,CBS Publishers,New Delhi,1997. - 5. OrganicSpectroscopy-WilliamKemp, 3rdedition, ELBS, 1991. - QuantitativeAnalysisofDrugs inPharmaceuticalformulation- PDSethi, 3rdEdition,CBSPublishers,NewDelhi,1997. - 7. PharmaceuticalAnalysis-Modernmethods-PartB-JWMunson,Volume11,MarcelDekkerSeries # PHARMACEUTICALFORMULATIONDEVELOPMENT (MIP102T) THEORY 60Hrs Scope This course is designed to impart knowledge and skills necessary to train the students on parwith the routine of Industrial activities in R&D and F&D. **Objectives** Oncompletion of this course it is expected that students will be able to understand- Thescheduledactivitiesina Pharmaceuticalfirm. ☐ Thepreformulationstudiesofpilot batchesofpharmaceuticalindustry. ☐ Thesignificance of dissolution and product stability UNIT-I 10Hrs Preformulation Studies: Molecular optimization of APIs (drug substances), crystal morphologyandvariations, powderflow, structure modification, drug-excipient compatibility studies, methods for determination of incompatability. UNIT-II 12Hrs FormulationAdditives:Studyofdifferentformulationadditives,factorsinfluencingtheirincorporation, role of formulation development and processing, new developments in excipientscience. Designof experiments—factorial design for product and process development. UNIT-III 12Hrs Solubility:Importance, experimental determination, phase solubility analysis, pH-solubility profile, solubilization techniques to improve solubility and utilization of analytical methods—cosolvency, salt formation, complexation, solid state manipulation, micellar solubilization and hydrotropy. UNIT-IV 12Hrs Dissolution: Theories, mechanisms of dissolution, in-vitro dissolution testing models – sink andnon-sinkindissolution. Factors influencing dissolution and intrinsic dissolution studies. Dissolution test apparatus – designs, dissolution testing for conventional and controlled release products. Data handling and correction factor in dissolution calculation. Biorelevent media, in-vitro and in-vivo correlations, levels of correlations. UNIT-V 12Hrs ProductStability:Degradationkinetics,mechanisms,stabilitytestingofdrugsandpharmaceuticals, factors influencing-media effects and pH effects, accelerated stability studies,interpretation of kinetic data (API & tablets). Solid state stability and shelf life assignment.Stabilityprotocols,reports andICHguidelines. Principal Vaagdevi College of Phanascy Hanunkonda, Wara e #### REFERENCEBOOKS: 1. LachmanL, LiebermanHA, KanigJL. The Theory and Practice Ofrd Industrial Pharmacy, 3ed., Varghese Publishers, Mumbai 1991.th 2. SinkoPJ.Martin'sphysicalpharmacyandpharmaceuticalsciences, 5ed., B.I.PublicationsPvt.Ltd, Noida, 2006. - 3.
LiebermanHA,LachmanL,SchwartzJB. Pharmaceuticaldosage forms: nd tabletsVol.I-III, 2ed.,CBSPublishers&distributors,New Delhi,2005. - 4. ConnersKA.ATextbookofpharmaceuticalanalysiWellsJI.Pharmaceuticalpreformulation:Thephysicochemicalpropertiesofdrugsubstances.EllisHorwoodLtd.,England,1998. - YalkowskySH, Techniquesofsolubilizationofdrugs. Vol-12. MarcelDekkerInc., New York, 1981 - Dressman J, Kramer J. Pharmaceutical dissolution testing. Saurah printer pvt. Ltd., New Delhi, 2005.rd - 7. SethiPD.Quantitativeanalysisofdrugsinpharmaceuticalformulations,3ed.,CBS publications,New Delhi,2008.Rd - 8. CarstensenJT,RhodesCT.Drugstabilityprinciplesandpractices,3CBSPublishers&distributors,New Delhi,2005.ed., - 9. YoshiokaS, StellaVJ. Stabilityofdrugsanddosageforms, Springer(India) Pvt. Ltd., NewDelhi, 2006.th - 10. BankerGS, RhodesCT. Modern Pharmaceutics, 4Inc, New York, 2005. - 11. W.Grimm-Stabilitytestingofdrugproducts.ed., MarcelDekker - 12. MazzoDJ.Internationalstability testing.EasternPressPvt.Ltd.,Bangalore,1999.13.BeckettAH,Stenlake JB.Practical pharmaceutical th chemistry,Part I& II.,4 2004.ed.,CBSPublishers&distributors,New Delhi, - 14. Indian Pharmacopoeia. Controller of Publication. Delhi, 1996. - 15. BritishPharmacopoeia.BritishPharmacopoeiaCommissionOffice,London,2008. - 16. UnitedStatesPharmacopoeia.UnitedStatesPharmacopeialConvention,Inc,USA,2003. - 17. EncyclopaediaofPharm.Technology,VolI-III. - 18. Wells J.I. Pharmaceutical Preformulation: The physicochemical properties of drug substances, Ellis Horwood Ltd. England, 1988. # NOVELDRUGDELIVERYSYSTEMS (MIP103T) THEORY 60Hrs Scope This course is designed to impart knowledge and skills necessary to trainthe students in he area of noveldrug delivery systems. **Objective** On completion of this course it is expected that students will be able to understand, Theneed, concept, designande valuation of various customized, sustained and controlled released osage forms. 1 Toformulateandevaluatevariousnoveldrugdeliverysystems UNIT-I 10Hrs SustainedRelease(SR)andControlledRelease(CR)formulations:Introduction&basic concepts,advantages/disadvantages, factors influencing, Physicochemical & biological approaches forSR/CR formulation, Mechanism of Drug Delivery from SR/CR formulationcomputationofdesiredreleaserateanddoseforcontrolledreleaseDDS,pharmacokinetic designforDDS—intermittent,zeroorder&firstorderrelease. UNIT-II 8Hrs CarriersforDrugDelivery:Polymers/copolymersintroduction,classification,characterization,polymerizationtechniques,applicationinCDDS/NDDS, biodegradable&naturalpolymers. UNIT-III 8Hrs RateControlledDrugDeliverySystems:Principles&Fundamentals,Types,Activation;ModulatedDrugDeliverySystems;Mechanicallyactivated,pHactivated,Enzymeactivated,andOsmotic activated Drug Delivery Systems Feedback regulated Drug Delivery Systems;Principles&Fundamentals. UNIT-IV 8Hrs Study of Various DDS: Concepts, design, formulation & evaluation of controlled release oralDDS, GRDDS, Mucoadhesive and buccalDDS, colon specific, liquid sustained release systems, Ocular delivery systems. UNIT-V 6Hrs Transdermal DrugDelivery Systems:Structure of skinandbarriers,Penetrationenhancers,TransdermalDrugDeliverySystems,Formulationandevaluation. UNIT-VI Protein and Pentide Delivery: Barriers for protein delivery. Formulation and Evaluation Protein andPeptideDelivery:Barriersforprotein delivery.Formulation andEvaluation ofdeliverysystems ofproteins andothermacromolecules. UNIT-VII 10Hrs TargetedDrugDeliverySystems: Importance,concept, biologicalprocessandeventsinvolved in drugtargeting,design,formulation&evaluation,methodsindrugtargeting—nanoparticles,liposomes,niosomes,pharmacosomes,resealederythrocytes,microspheres,magnetic microspheres.Specialized pharmaceutical emulsions—multiple emulsions,microemulsions.StudyofcommercialformulationsDOXIL,RISPERDALCONSTA,LUPRONDEPOT,IN VEGASUSTENNA,andLANCOME. UNIT-VIII 6Hrs BiotechnologyinDrugDeliverySystems:Briefreviewofmajorareas-recombinantDNAtechnology,monoclonalantibodies,genetherapy. #### **REFERENCEBOOKS:** - 1. NovelDrugDeliverySystem, Y.W.Chein, Vol50, MarcelDekker, NY. - 2. ControlledDrugDeliverySystems,Robinson,Vol29,MarcelDekker,NY. - $3.\ Transdermal Controlled Systemic Medications, YWChein, Vol 31, Marcel Dekker, NY.$ - 4. BioadhesiveDDS, E. Mathiowitz, Vol98, MarcelDekker, NY. - 5. NasalSystemDrugDelivery, K.S.E.Su, Vol39, MarcelDekker, NY. - 6. DrugDeliveryDevices, Vol32, PTyleMarcel Dekker, NY. - 7. PolymersforControlledDrugDelivery, P.J. Tarcha, CRCPress. - 8. PharmaceuticalBiotechnology, Vyas, CBS, Delhi. - 9. BiotechnologyofIndustrialAntibiotics, E.J. Vandamme, MarcelDekker, NY. - 10. ProteinFormulation&Delivery, E.J. McNally, Vol99, Marcel Dekker, NY. - 11. DrugTargeting, M.H.Rubinstein, John Wiley, NY. # IPR AND REGULATORYAFFAIRS (MPH104T) THEORY 60Hrs Scope Course designed toimpartadvanced knowledgeand skills required to learn the concept ofgeneric drug and their development, various regulatory filings in different countries, different phases of clinical trials and submitting regulatory documents: filing process of IND, NDA and ANDA | ı | Toknownieapprovalprocessor | |---|--| | Γ | Toknowthechemistry, manufacturing controls and their regulatory importance | □ Tolearnthedocumentationrequirementsfor □ Tolearntheimportanceand **Objectives:** Uponcompletionofthecourse, it is expected that the students will be able to understand ☐ TheConceptsofinnovatorandgeneric $\label{lem:condition} \ \sqcap \ drugs, drug development Process The Regulatory guidance's and guidelines for filing and approximation of the process of the regulatory guidance's and guidelines for filing and approximation of the process of the regulatory guidance's and guidelines for filing and approximation of the process of the regulatory guidance's and guidelines for filing and approximation of the process of the regulatory guidance's and guidelines for filing and approximation of the process of the regulatory guidance's and guidelines for filing and approximation of the process of the regulatory guidance's and guidelines for filing and approximation of the process of the regulatory guidance's and guidelines for filing and approximation of the process of the regulatory guidance's and guidelines for filing and approximation of the process pro$ □ oval processPreparationofDossiersandtheirsubmissiontoregulatoryagencies indifferent are countries Postapproval regulatory requirements for actives and drug $\label{lem:condition} \ \ \, \Gamma \ \, products Submission of global documents in CTD/eCTD formats Clinical trials requirements for the condition of condit$ ☐ orapprovalsforconductingclinicaltrials ☐ Pharmacovigilenceandprocessofmonitoring inclinicaltrials. UNIT-I 10Hrs Drugproductdevelopment: Active pharmaceutical ingredients, drugmaster file (DMF) and impurities. Generic product development: Introduction, Hatch-Waxman act and amendments, GUDUFA, ANDA (505j), ANDA approval process. New drug application (505B1 and 505B2). NDA approval process including IND. Scale up and postap proval changes (SUPAC). Bio equivalence and Bio availability, different types of studies for drugproduct approval. UNIT-II 10Hrs ICH- Guidelines of ICH - Q7 to Q11, M9. Clinical Trials. HIPPA - new, requirements toclinicalstudyprocess, Parmacovigilance safetymonitoring inclinical trials. UNIT-III 10Hrs ANDA for generic drugs ways and means of US registration for foreign drugs. CMC, Postapprovalregulatoryaffairs.Regulationforcombinationproducts,medicaldevices&Biosimilars. UNIT-IV 10Hrs BriefintroductiontoCDSCO,WHO,USFDA,EMEA,TGA,MHRA,MCC,ANVISA. UNIT-V 10Hrs Definitions, Need for Patenting, Types of Patents, Conditions to be satisfied by an invention tobePatentable,introduction topatentand patentsearch.Parts of Patent. Filing of patents. Theessentialelementsofpatent. Guidelines for preparationoflaboratorynotebook, Non-obviousness inpatent. UNIT-VI 10Hrs Copyright, Trademark, Geographical indication acts, Patentlitigation, 180 days market exclusivity and Doctrine of equivalents. #### **REFERENCEBOOKS:** - 1. GenericDrugProductDevelopment,SolidOralDosageforms,LeonShargeland IsaderKaufer,MarcelDekkerseries,Vol.143 - 2. The Pharmaceutical Regulatory Process, Second Edition Edited by IraR. Berry and Robert P. Martin, Drugs and the Pharmaceutical Sciences, Vol. 185, Informa Health care Publishers. - 3. NewDrugApprovalProcess:AcceleratingGlobalRegistrationsByRichardAGuarino, MD,5thedition,Drugs andthePharmaceuticalSciences,Vol.190. - 4. Guidebookfordrugregulatorysubmissions/SandyWeinberg.ByJohnWiley&Sons.Inc. - 5. FDAregulatoryaffairs:aguideforprescriptiondrugs, medicaldevices,andbiologics/editedByDouglas J.Pisano,DavidMantus. - 6. ClinicalTrialsandHumanResearch:APracticalGuidetoRegulatoryComplianceByFayA.RozovskyandRodneyK.Adams - 7. www.ich.org/ - 8. www.fda.gov/ - 9. europa.eu/index en.htm - 10. https://www.tga.gov.au/tga-basics # MODERN PHARMACEUTICAL ANALYTICALTECHNIQUES PRACTICALS (MIP105P) - 1. AnalysisofpharmacopoeialcompoundsandtheirformulationsbyUVVisspectrophotometer(Minimum4Experiments) - 2. SimultaneousestimationofmulticomponentcontainingformulationsbyUV/HPLCspectrophoto metry(Minimum4Experiments) - ExperimentsbasedonHPLC - 4. ExperimentsbasedonGasChromatography - 5. Estimationofriboflavin/quininesulphatebyfluorimetry - 6. Estimationofsodium/potassiumbyflamephotometry ## INDUSTRIALPHARMACY-IPRACTICALS (MIP106P) - 1. TocarryoutpreformulationstudiesofdrugslikeeffectofsurfactantsandpHonthe solubilityofdrugs,compatibilityevaluationofdrugsandexcipients byDSCandFTIR . - 2. Formulationandevaluation of SR/CRT ablets and compare In-Vitro dissolution profile of SR/CRM arketed formulation. - 3. FormulationandevaluationosmoticallycontrolledDDS - 4. Preparationandevaluation of Floating DDS-hydrodynamically balanced DDS - 5. Formulationandevaluation of Mucoadhesive tablets. - 6. Formulationandevaluation of transdermal patches. - 7.
StabilitystudiesofdrugsinsolutionsandsoliddosageformsaccordingtotheICHguidelines. - 8. Tostudytheeffectofcompressionalforce, particlesize and binderson tablets disintegration time and dissolution of atablet. - 9. TostudyMicromeriticpropertiesofpowdersandgranulation. - 10. Preparationandevaluation of different polymeric membranes. - 11. Tostudytheeffectoftemperaturechange,nonsolventaddition,incompatiblepolymeradditionin microcapsulespreparation - 12. PreparationandevaluationofAlginatebeads - 13. Formulationandevaluationofgelatin/albuminmicrospheres - 14. Formulationandevaluationofliposomes/niosomes ## SEMESTER-II ADVANCEDBIOPHARMACEUTICS&PHARMACOKINETICS (MPH201T) THEORY 60Hrs Scope This course is designed to impart knowledge and skills necessary for dose calculations, doseadjustmentsandtoapplybiopharmaceuticstheoriesinpractical problemsolving. Basictheoretical the discussions principles of biopharmaceutics of and pharmacokinetics provided to help the students' to clarify the concepts. **Objectives** Uponcompletion of this course it is expected that students will be able understand, ☐ Thebasicconceptsinbiopharmaceuticsandpharmacokinetics. Theuserawdataandderivethepharmacokineticmodelsandparametersthebestdescribetheproces sofdrug absorption, distribution, metabolismandelimination. The critical evaluation of biopharmaceutic studies involving drug producte quivalency. The designande valuation of biopharmaceutic studies involving drug producte quivalency. The designande valuation of biopharmaceutic studies involving drug producte quivalency. The designande valuation of biopharmaceutic studies involving drug producte quivalency. The designande valuation of biopharmaceutic studies involving drug producte quivalency. The designande valuation of biopharmaceutic studies involving drug producte quivalency. The designande valuation of biopharmaceutic studies involving drug producte quivalency. The designande valuation of biopharmaceutic studies involving drug producte quivalency. onofdosageregimensofthedrugsusingpharmacokineticand biopharmaceuticparameters. 1 The potential clinical pharmacokinetic problems and application of basics of pharmacokinetic **UNIT-I** 10Hrs DrugAbsorptionfrom theGastrointestinal Tract: Gastrointestinal tract. Mechanism of drugabsorption, Factors affecting drugabsorption, pHpartitiontheory of drugabsorption. Formulation and physicochemical factors: Dissolution rate, Dissolut ionprocess, Noyes-Whitneyequation and drug dissolution, Factors affecting the dissolution rate. Gastrointestinal absorption:role of the dosage form: Solution (elixir, syrup and solution) as a dosage form ,Suspension as adosageform, Capsuleasadosageform, Tabletasadosageform, Dissolution methods Formulation and processing factors, Correlation of in vivo data with in vitro dissolution data.Transportmodel:Permeability-Solubility-ChargeStateandthepHPartitionHypothesis,Properties of the Gastrointestinal Tract (GIT), pH Microclimate Intracellular pH Environment, Tight-JunctionComplex. UNIT-II 10Hrs Biopharmaceutic considerations in drug product design and In Vitro Performance: Introduction, biopharmaceutic factors affecting drug bioavailability, rate-limiting steps in drug absorption, physicochemical nature of the drug, formulation factors affecting drug product performance, invitro:dissolutionanddrugreleasetesting,compendialmethodsofdissolution,alternativemethods of dissolution testing, meeting dissolution requirements, problems of variable controllindissolution testing performance of drug products. In vitro-in vivo correlation, dissolution 57 Vaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 profilecomparisons. UNIT-III 10Hrs Pharmacokinetics: Basic considerations, pharmacokinetic models, compartment modeling: onecompartmentmodel-IVbolus,IVinfusion,extra-vascular.Multi compartmentmodel:twocompartment-modelinbrief. UNIT-IV 10Hrs Non-linear pharmacokinetics: cause of non-linearity, Michaelis - Menten equation, estimationofKmaxandVmax.NoncompartmentalPharmacokinetics- statisticalmomenttheoryandphysiological pharmacokinetic model. Altered pharmacokinetics in renal and hepatic diseases. Drug interactions: introduction, the effect of protein binding on interactions, the effect of tissue-binding on interactions, cytochrome p450-based drug interactions, and drug interactions linked to transporters. 10 Hrs UNIT-V 10Hrs DrugProductPerformance,InVivo:BioavailabilityandBioequivalence:drugproductperformance, studies, relative of bioavailability and absolute for assessing bioavailability, bioequivalence studies, designande valuation of bioequivalence studies, study designs, crossover study designs, evaluation of the data, bioequivalence example, study Biopharmaceutics submission and drug review process. classification methods.Permeability:In-vitro,in-situandIn- vivomethods.genericbiologics(biosimilardrugproducts),clinical significance of bioequivalence studies, special concerns in bioavailability andbioequivalence studies, generic substitution. UNIT-VI 10Hrs Application of Pharmacokinetics: Chrono pharmacokinetics, Modified-Release Drug Products, Targeted Drug Delivery Systems and Biotechnological Products. Introduction to Pharmacokinetics and pharmacodynamics of biotechnology drugs Proteins and peptides, Monoclonal antibodies, Oligonucleotides, Vaccines (immunotherapy), Genetherapies. #### **REFERENCEBOOKS:** - BiopharmaceuticsandClinicalPharmacokineticsbyMiloGibaldi,4thedition,Philadelphia,Leaa ndFebiger,1991 - 2. BiopharmaceuticsandPharmacokinetics,A.Treatise,D.M.BrahmankarandSunilB.Jaiswal., VallabPrakashan,Pitampura,Delhi - 3. AppliedBiopharmaceuticsandPharmacokineticsbyShargel.LandYuABC,2ndedition, ConnecticutAppletonCenturyCrofts,1985 - 4. TextbookofBiopharmaceuticsandPharmacokinetics,Dr.ShobhaRaniR.Hiremath,PrismBook - 5. PharmacokineticsbyMiloGibaldiandD.Perrier,2ndedition,MarcelDekkerInc.,NewYork,1982 - 6. CurrentConceptsinPharmaceuticalSciences:Biopharmaceutics,Swarbrick.J,LeaandFebiger, Philadelphia,1970 - 7. ClinicalPharmacokinetics,ConceptsandApplications3rdeditionbyMalcolmRowlandandTho m~ N.Tozer,Lea andFebiger,Philadelphia,1995 - 8. Dissolution, Bioavailability and Bioequivalence, Abdou. H.M, Mack Publishing Company, Pennsylvania 1989 - 9. BiopharmaceuticsandClinicalPharmacokinetics,AnIntroduction,4thedition,revisedand expandebyRobert.E.Notari,MarcelDekkerInc,New YorkandBasel,1987. - 10. BiopharmaceuticsandRelevantPharmacokineticsbyJohn.GWagnerandM.Pemarowski,1stedition.DrugIntelligence Publications,Hamilton,Illinois,1971. - 11. EncyclopediaofPharmaceuticalTechnology, Vol13, James Swarbrick, James G. Boylan, MarcelDekkerInc, New York, 1996. - 12. BasicPharmacokinetics,1stedition,SunilSJambhekarandPhilipJBreen,pharmaceutical press,RPSPublishing,2009. - 13. AbsorptionandDrugDevelopment-Solubility,Permeability,andChargeState,AlexAvdeef,JohnWiley&Sons,Inc,2003. # PHARMACOLOGY # (MPL)MODERNPHARMACEUTICALANALYTICALTECHN IQUES(MPL101T) #### THEORY 60HOURS Scope This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments deal tare Mass spectrometer, IR, HPLC, GC etc. **Objectives** □ skills oftheinstruments | A. | ftercompletionofcoursestudentisabletoknow, Chemical | |----|--| | | sandExcipients | | Γ | Theanalysis of various drugs in single and combination do sage forms Theoretical and practical | Unit-1: a. UV-Visible spectroscopy: Introduction, Theory, Laws, Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and solvent effect and Applications of UV-Visible spectroscopy. b.IRspectroscopy:Theory,ModesofMolecularvibrations,Samplehandling,Instrumentation of Dispersive and Fourier - Transform IR Spectrometer, Factors affectingvibrationalfrequencies andApplicationsofIR spectroscopy c. Spectroflourimetry: TheoryofFluorescence, Factors affecting fluorescence, Quenchers, Instrument ation and Applications of fluorescence spectrophotometer. 10 HRS #### Unit- 2:.MassSpectroscopy:Principle,Theory,InstrumentationofMassSpectroscopy,Differenttypesofi onizationlikeelectronimpact,chemical,field,FABandMALDI,APCI,ESI,APPIAnalyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules,Metastableions,IsotopicpeaksandApplicationsofMassspectroscopy. 8HRS #### Unit- 3. Chromatography: Principle, apparatus, instrumentation, chromatographic parameters, factors affect ingresolution and applications of the following: a)Paperchromatographyb)ThinLayerchromatographyc)Ionexchangechromatographyd)Column chromatographye)Gaschromatography f)High PerformanceLiquidchromatography (12HRS) g)Affinitychromatography Unit-4. Electrophoresis: Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following: a) Paperelectrophoresisb)Gelelectrophoresisc)Capillaryelectrophoresisd)Zoneelectrophoresise)Movingboundaryelectrophoresisf)Isoelectricfocusing12HRS Principal Vaagdevi College of Pharmack namkonda, Warangal-506 00f 129 Unit-5a)Immunologicalassays:RIA(Radioimmunoassay),ELISA,Bioluminescenceassays. b) Thermaltechniques:DSC,DTA,TGA,Principle,Instrumentation,factorsaffecting,advantages and disadvantages and Pharmaceutical applications. 10HRS Unit-6:NMRSpectroscopy:QuantumnumbersandtheirroleinNMR,Principle,instrumentation, solvent requirements in NMR, Relaxation process, NMR signals in variouscompounds.BriefoutlineofFT-NMRandC¹³NMR,applicationsofNMRSpectroscopy. #### REFERENCEBOOKS: - 1. SpectrometricIdentificationofOrganiccompounds-RobertMSilverstein,Sixthedition,JohnWiley&Sons,2004. - 2. PrinciplesofInstrumentalAnalysis-Doglas ASkoog, F. JamesHoller,TimothyA. Nieman,5thedition,Easternpress,Bangalore,1998. - $3. \ In strumental methods of analysis-Willards, 7 the dition, CBS publishers.$ - 4. PracticalPharmaceuticalChemistry–BeckettandStenlake,VolII,4thedition,CBS Publishers,New Delhi,1997. - 5.
OrganicSpectroscopy-WilliamKemp,3rdedition,ELBS,1991. - 6. QuantitativeAnalysisofDrugs inPharmaceuticalformulation- PDSethi, 3rdEdition.CBSPublishers,NewDelhi,1997. - 7. Pharmaceutical Analysis-Modernmethods-Part B-JWMunson, Volume 11, Marcel Dekker Series # ADVANCEDPHARMACOLOGY-I(MPL102T) #### **THEORY** 60HOURS Scope The subject is designed to strengthen the basic knowledge in the field of pharmacologyand to impart recent advances in the drugs used for the treatment of various diseases. Inaddition, this subject helps the students to understand the concepts of drug action and mechanisms involved # **Objectives** Uponcompletionofthe coursethe ☐ studentshallbeableto:Discussthepathophysiologyandpharmacotherapyofc ☐ ertaindiseasesExplainthemechanismofdrugactionsatcellularandmolecula rlevel □ Understandtheadverseeffects, contraindications and clinical uses of drugs used in treatment of diseases # Unit-1:GeneralPharmacology - a. Pharmacokinetics: The dynamics of drug absorption, distribution, biotransformation and elimination. Concepts of linear and non-linear compartment models. Significance of Protein binding. - b. Pharmacodynamics:Mechanismofdrugactionandtherelationshipbetweendrugconcentration and effect.Receptors, structural and functional families of receptors, quantitation of drug receptors interaction and elicited effects. # Unit-2:Neurotransmission - a. Generalaspectsandstepsinvolvedinneurotransmission. - b. Neurohumoraltransmissioninautonomicnervoussystem(Detailedstudyabout neurotransmitters-AdrenalineandAcetylcholine). - c. Neurohumoraltransmissionincentralnervoussystem(Detailedstudyaboutneurotrans mitters-histamine,serotonin,dopamine, GABA,glutamateandglycine]. - d. Nonadrenergicnoncholinergictransmission(NANC).Co-transmission. 10Hrs # Unit- 3:Systemicpharmacology:Adetailedstudyonpathophysiologyofdiseases,mechanismofaction,ph armacologyandtoxicology of existing as well as novel drugs used in the following systemsAutonomicPharmacologyParasympathomimeticsandlytics,sympathomimeticsandlytic s,agentsaffectingneuromuscularjunction 10hrs Unit-4: Centrel Nervous System pharmacology General andlocal anestheticsSedatives andhypnotics,drugsusedtotreatanxiety.Depression,psychosis,mania,epilepsy,neurodegeneratived iseases.Narcoticandnon-narcoticanalgesics 10hrs Unit-5: Cardiovascular Pharmacology: Diuretics, antihypertensives, antiischemics, antiarrhythmics, drugsforheart failure and hyperlipidemia. Hematinics, coagulants, anticoagulants, fibrinolytics and anti-platelet drugs #### Unit- 6:Autocoidpharmacology:ThephysiologicalandpathologicalroleofHistamine,Serotonin,KininsProstaglandinsOpioidautocoids.Pharmacologyofantihistamines,5HTantagonists. 10Hrs #### REFERENCEBOOKS - 1. The Pharmacological Basis of Therapeutics, Goodman and Gillman's - 2. Principles of Pharmacology. The Pathophysiologic basis of drug Therapy by DavidEGolan, ArmenH, Tashjian Jr, Ehrin J, Armstrong, April W, Armstrong, Wolters, Kluwer-Lippincott Williams & Wilkins Publishers. - 3. BasicandClinicalPharmacologybyB.GKatzung - 4. HandbookofClinicalPharmacokineticsbyGibaldiandPrescott. - 5. AppliedbiopharmaceuticsandPharmacokineticsbyLeonShargelandAndrewB.C.Yu. - 6. GrahamSmith.OxfordtextbookofClinicalPharmacology. - 7. AveryDrugTreatment - 8. DipiroPharmacology,Pathophysiologicalapproach. GreenPathophysiologyforPharmacists # PHARMACOLOGICALANDTOXICOLOGICALSCREENINGMETHODS-I(MPL 103T) THEORY 60HOURS **Scope:** This subject is designed to impart the knowledge on preclinical evaluation of drugs andrecentexperimentaltechniquesinthedrugdiscoveryanddevelopment. The subject contenthelps the student to understand the maintenance of laboratoryanimals as per the guidelines, basicknowledge of various in-vitro and in-vivo preclinical evaluation processes # **Objectives** Uponcompletion of the course the student shall be able to, ☐ Appraisetheregulations and ethical requirement for the usage of experimental animals. ☐ Describethevariousanimalsusedinthedrugdiscoveryprocessandgoodlaboratory practicesinmaintenance andhandlingofexperimentalanimals ☐ Describethevariousnewerscreeningmethodsinvolvedinthedrugdiscoveryprocess ☐ Appreciateandcorrelatethepreclinicaldatatohumans Unit-1: Laboratory Animals: Common laboratory animals: Description, handling andapplicationsofdifferentspeciesandstrainsofanimals. Transgenicanimals: Production, maintenanceand applications Anaesthesia and euthanasia of experimental animals. Maintenance and breedingof laboratory animals. CPCSEA guidelines to conduct experiments on animals Good laboratorypractice. Bioassay-Principle, scopeandlimitations and methods. 12hrs Unit-2: Preclinical screening of new substances forthe pharmacological activity using in vivo, invitro, and other possible animal alternative models. Generalprinciplesofpreclinicalscreening.CNSPharmacology:behavioralandmusclecoordination,C NSstimulantsanddepressants,anxiolytics,anti-psychotics,anti epilepticsandnootropics. Drugs for neurodegenerative diseases like Parkinsonism, Alzheimers and multiplesclerosis. DrugsactingonAutonomicNervousSystem. 12hrs Unit-3: Preclinical screening of new substancesforthe pharmacological activity using in vivo, invitro, and other possible animal alternative models. Respiratory Pharmacology: anti-asthmatics, drugs for COPD and anti allergics. ReproductivePharmacology: Aphrodisiacs and antifertility agents Analgesics, antiinflammatory and antipyreticagents. Gastrointestinal drugs: antiulcer, anti-emetic, anti-diarrheal and laxatives. 12hrs Unit-4: Preclinical screening of new substances forthe pharmacological activity using in vivo, invitro, and other possible animal alternative models. Cardiovascular Pharmacology: antihypertensives, antiarrythmics, antianginal, antiatheroscleroticagents and diuretics. Drugs for metabolic disorders like anti-diabetic, antidyslipidemic agents. Anticanceragents. Hepatoprotectives creening methods. 12hrs Unit-5: Preclinical screening of new substances forthe pharmacological activity using in vivo, invitro, and other possible animal alternative models. I immuno modulators, Immuno suppressants and immuno stimulants General principles of immuno assay: theoretical basis and optimization of immuno assay, heterogeneous and homogenous immuno assay systems. Immuno assay methods evaluation; protocol outline, objectives and preparation. Immuno assay for digoxin and insulin Limitations of animal experimentation and alternate animal experiments. Extrapolation of invitrodatato preclinical and preclinical to humans. #### REFERENCEBOOKS: - 1. Biologicalstandardizationby J.H.Burn D.J. Finneyand I.G. Goodwin - 2. ScreeningmethodsinPharmacologybyRobertTurner.A - 3. Evaluation of drugs activities by Laurence and Bachrach - 4. MethodsinPharmacologybyArnoldSchwartz. - 5. FundamentalsofexperimentalPharmacologybyM.N.Ghosh - 6. Pharmacological experiment on intact preparations by Churchill Livingstone - 7. DrugdiscoveryandEvaluationbyVogelH.G. - 8. ExperimentalPharmacologybyR.K.Goyal. - 9. PreclinicalevaluationofnewdrugsbyS.K.Guta - 10. HandbookofExperimentalPharmacology,SK.Kulkarni - 11. PracticalPharmacologyandClinicalPharmacy,SK.Kulkarni,3rdEdition. - 12. DavidR.Gross.AnimalModelsinCardiovascularResearch,2ndEdition,KluwerAcademic Publishers,London,UK. - 13. ScreeningMethodsinPharmacology,RobertA.Turner. - 14. RodentsforPharmacologicalExperiments,Dr.TapanKumarchatterjee. - $15. \ Practical Manual of Experimental and Clinical Pharmacology by Bikash Medhi (Author), \\ A jay Prakash$ # CELLULAR AND MOLECULAR PHARMACOLOGY (MPL # 104T)THEORY **60HOURS** Scope: The subjectimparts a fundamental knowledge on the structure and functions of cellular components and help to understand the interaction of these components with drugs. This information will further help the student to apply the knowledge indrug discovery process. Objectives: Uponcompletionofthecourse, the students hall beable to, - Explainthereceptorsignal transduction processes. - Explainthemolecular pathways affected by drugs. - ${\bf \cdot} Appreciate the applicability of molecular pharmacology and biomarkers in drug discovery process.$ - •Demonstratemolecularbiologytechniquesasapplicableforpharmacology Unit- 1:CellbiologyStructureandfunctionsofcellanditsorganelles.Genomeorganization.Geneexpressiona nditsregulation,importanceofsiRNAandmicroRNA,genemappingandgenesequencingCellcyclesan ditsregulation.Celldeath—events,regulators,intrinsicandextrinsicpathwaysofapoptosis. Necrosisandautophagy. 12hrs Unit-2:CellsignalingIntercellularandintracellularsignalingpathways. Classification of receptor family and molecular structure ligand gated ion channels; G-proteincoupledreceptors,tyrosinekinase receptors and nuclear receptors. Secondary messengers: cyclic AMP, cyclic GMP, calcium ion, inositol 1,4,5-trisphosphate,(IP3),NO,anddiacylglycerol. Detailed study of following intracellular signaling pathways: cyclic AMP signaling pathway, mitogen-activated protein kinase (MAPK) signaling, Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway. 12hrs Unit-3:PrinciplesandapplicationsofgenomicandproteomictoolsDNAelectrophoresis,PCR(reverse transcription and real time), Gene sequencing, micro array technique, SDS page, ELISAandwesternblotting,RecombinantDNAtechnologyandgenetherapyBasicprinciplesofrecombinant DNA technology-Restriction enzymes, various types of vectors. Applications of of technology. Gene therapy- Various types of gene transfer techniques, clinical applications and recent advances in genetherapy. Unit- 4:PharmacogenomicsGenemappingandcloningofdiseasegene.Geneticvariationanditsroleinhealth/pharmacologyPolymorphismsaffectingdrugmetabolism 135 Genetic variation in drug transporters, Genetic variation in G protein coupled receptors, Applications of proteomics cience: Genomics, proteomics, metabolomics, functionomics, nutrigenomics Immunotherapeutics, Types of immunotherapeutics, humanisation antibody therapy, Immunotherapeutics inclinical practice 12 hrs
Unit-5:a.Cellculturetechniques Basicequipmentsusedin cellculturelab.Cellculturemedia,varioustypesof cell culture,general procedure for cell cultures; isolation of cells, subculture, cryopreservation,characterizationofcellsandtheirapplication.Principlesandapplicationsof cellviabilityassays,glucose uptake assay, Calcium influx assays ,Principles and applications of flow cytometryb.Biosimilars 12hrs ### **REFERENCEBOOKS:** - 1. TheCell,AMolecularApproach.GeoffreyMCooper. - 2. Pharmacogenomics:TheSearchforIndividualizedTherapies.EditedbyJ.LicinioandM -L.Wong - 3. HandbookofCellSignaling(SecondEdition)EditedbyRalphA.et.al - 4. MolecularPharmacology:FromDNAtoDrugDiscovery.JohnDickensonet.al - 5. BasicCellCultureprotocolsbyCherilD.HelgasonandCindyL.Miller - 6. BasicCellCulture(PracticalApproach)byJ.M.Davis(Editor) - 7. AnimalCellCulture: APractical Approach by John R. Masters (Editor) Current porotocol sin molecular biology vol Ito VI edited by Frederick M. Ausuvelet la # PHARMACOLOGY PRACTICAL-I(MPL105P) # Listofexperiments - 1. AnalysisofpharmacopoeialcompoundsandtheirformulationsbyUVVisspectrophotometer - 2. Simultaneousestimationofmulticomponent containing formulations by UV spectrophotometry - 3. ExperimentsbasedonHPLC - 4. ExperimentsbasedonGasChromatography - 5. Estimationofriboflavin/quininesulphatebyfluorimetry - 6. Estimationofsodium/potassiumbyflamephotometry - 7. Handlingoflaboratoryanimals. - 8. Various routes of drugad ministration. - 9. Techniques of bloods ampling, an est hesia and euthanasia of experimental animals. - 10. Functional observation battery tests (modified Irwintest) - 11. Evaluation of CNS stimulant, depressant, anxiogenics and anxiolytic, anticonvulsant activity. - 12. Evaluation of an algesic, anti-inflammatory, local an esthetic, mydriatic and miotic activity. - 13. Evaluation of diuretic activity. - 14. Evaluation of antiul ceractivity by pylorus ligation method. - 15. Oralglucosetolerancetest. #### REFERENCEBooks: - 1. CPCSEA,OECD,ICH,USFDA,ScheduleY,EPAguidelines, - 2. FundamentalsofexperimentalPharmacologybyM.N.Ghosh - 3. ExperimentalPharmacologybyM.C.Prabhakar - 4. HandbookofExperimentalPharmacologybyS.K.Kulkarni. - 5. PracticalsinPharmacologybyR.K.Goel - 6. DrugdiscoveryandEvaluationbyVogelH.G. - 7. SpectrometricIdentificationofOrganiccompounds-RobertMSilverstein, - 8. PrinciplesofInstrumentalAnalysis-DoglasASkoog,F.JamesHoller,TimothyA.Nieman, - 9. Vogel's Textbook of quantitative chemical analysis-Jeffery, Basset, Mendham, Denney, - 10. BasicCellCultureprotocolsbyCherilD. HelgasonandCindyL.Mille - 11. BasicCellCulture(PracticalApproach)byJ.M.Davis(Editor) - 12. AnimalCellCulture: APracticalApproachbyJohnR. Masters (Editor) - 13. PracticalManualofExperimentalandClinicalPharmacologybyBikashMedhi(Author), AjayPrakash(Author)Jaypeebrothers'medicalpublishersPvt.Ltd # PHARMACOLOGYPRACTICAL-II(MPL106P) - 1. Isolationandidentification of DNA from various sources (Bacteria, Cauliflower, onion, Goatliver). - 2. IsolationofRNAfromyeast - 3. EstimationofproteinsbyBraford/Lowry'sinbiologicalsamples. - 4. EstimationofRNA/DNAbyUVSpectroscopy - 5. GeneamplificationbyPCR. - 6. ProteinquantificationWesternBlotting. - 7. Enzymebasedin-vitroassays(MPO, AChEs, aamylase, aglucosidase). - 8. Cellviabilityassays(MTT/Trypanblue/SRB). - 9. DNA fragmentation assay by a garosegel electrophores is. - 10. DNAdamagestudybyCometassay. - 11. Apoptosisdetermination by fluorescentimaging studies. - 12. Pharmacokineticstudiesanddataanalysisofdrugsgivenbydifferent routesofadministrationusingsoftwares - 13. Enzymeinhibitionandinductionactivity - 14. Extractionofdrugfromvariousbiologicalsamplesandestimationofdrugsinbiologicalfluidsu singdifferentanalyticaltechniques (UV) - $15. \ Extraction of drug from various biological samples and estimation of drug sin biological fluid surpdifferent analytical techniques (HPLC)$ #### REFERENCEBOOKS: - 1. CPCSEA,OECD,ICH,USFDA,ScheduleY,EPAguidelines, - 2. FundamentalsofexperimentalPharmacologybyM.N.Ghosh - 3. ExperimentalPharmacologybyM.C.Prabhakar - 4. HandbookofExperimentalPharmacologybyS.K.Kulkarni. - 5. PracticalsinPharmacologybyR.K.Goel - DrugdiscoveryandEvaluationbyVogelH.G. - 7. SpectrometricIdentificationofOrganiccompounds-RobertMSilverstein, - 8. PrinciplesofInstrumentalAnalysis-DoglasASkoog,F.JamesHoller,TimothyA.Nieman, - 9. Vogel's Textbook of quantitative chemical analysis-Jeffery, Basset, Mendham, Denney, - 10. BasicCellCultureprotocolsbyCherilD. HelgasonandCindyL.Mille - 11. BasicCellCulture(PracticalApproach)byJ.M.Davis(Editor) - 12. AnimalCellCulture: APracticalApproachbyJohnR. Masters (Editor) - 13. PracticalManualofExperimentalandClinicalPharmacologybyBikashMedhi(Author), AjayPrakash(Author)Jaypeebrothers'medicalpublishersPvt.Ltd # SEMESTER-II ADVANCEDPHARMACOLOGY-II(MPL201T) THEORY 60Hours # Scope The subjectis designedtostrengthen the basic knowledgein thefieldof pharmacology andtoimpartrecentadvancesin the drugs usedfor the treatment of various diseases. In addition, the subject helps the student to understand the concepts of drug action and mechanism involved **Objectives** Uponcompletionofthe coursethe $\label{lem:continuous} \Gamma students hall be able to: Explain the mechanism of drug actions at cellular and molecular and the continuous continu$ [PlevelDiscussthePathophysiologyandpharmacotherapyofcertaindiseases] □ Understandtheadverseeffects, contraindicationsandclinicalusesofdrugsusedintreatmentofdiseases Unit-1:EndocrinePharmacology Molecularandcellular mechanismofactionofhormonessuchasgrowthhormone,prolactin,thyroid,insu linandsexhormones Anti- thyroiddrugs,Oralhypoglycemicagents,Oralcontraceptives,Corticosteroids.Drugsaffectingcalc iumregulation 12hrs Unit-2Chemotherapy:Cellularandmolecularmechanismofactionsandresistanceofantimicrobial agentssuchasß- lactams, a minogly cosides, quino lones, Macrolidean tibiotics. Antifungal, antiviral, and anti-TB drugs and the sum of the control 12hrs #### Unit-3Chemotherapy Drugs usedin Protozoal Infections Drugs usedinthe treatment of Helminthiasis ChemotherapyofcancerImmunopharmacologyCellularandbiochemicalmediatorsofinflammationa ndimmune response. Allergic or hypersensitivity reactions. Pharmacotherapy of asthma andCOPD.ImmunosuppressantsandImmunostimulants 12hrs #### Unit-4GITPharmacology Antiulcerdrugs, Prokinetics, antiemetics, anti-diarrheals and drugs for constipation and irritable bowels yndrome. Chronopharmacology Biological and circadian rhythms, applications of chronotherapy in various diseases likecardiovasculardisease, diabetes, asthmaandpepticuleer 12hrs #### Unit- 5:FreeradicalsPharmacology:Generationoffreeradicals,roleoffreeradicalsinetiopathologyofvariou sdiseasessuchasdiabetes,neurodegenerativediseasesandcancer.Protective activity of certain important antioxidant: Recent Advances in Treatment: Alzheimer's disease, Parkinson's disease, Cancer, Diabetes mellitus 12hrs # REFEERENCEBOOKS: - 1. The Pharmacological basis of the rapeutics-Goodman and Gillman's - $2. \ \ Principles of Pharmacology. The Pathophysiologic basis of drug the rapy by David EG olanetal.$ - 3. BasicandClinicalPharmacologybyB.G-Katzung - 4. PharmacologybyH.P.RangandM.M.Dale. - 5. HandbookofClinicalPharmacokineticsbyGibaldiandPrescott. - 6. Textbook of The rapeutics, drugand disease management by ET. Her find a land Gourley. - 7. AppliedbiopharmaceuticsandPharmacokineticsbyLeonShargelandAndrewB.C.Yu. - 8. HandbookofEssentialPharmacokinetics,PharmacodynamicsandDrugMetabolismforInd ustrialScientists - 9. Robbins&CortanPathologicBasisofDisease,9thEd.(RobbinsPathology) - 10. ACompleteTextbookofMedicalPharmacologybyDr.S.KSrivastavapublishedbyAPC AvichalPublishingCompany. - 11. KD. Tripathi. Essentials of Medical Pharmacology Principles of Pharmacology. The Pathophysiologic basis of drug Therapy by David E Golan, Armen H, Tashjian Jr, Ehrin J, Armstrong, April W, Armstrong, Wolters, Kluwer-Lippincott Williams & Wilkins Publishers # PHARMACOLOGICALANDTOXICOLOGICALSCREENING METHODS-II (MPL202T) THEORY 60Hours Scope: This subject imparts knowledge on the preclinical safety and toxicological evaluation of drug &new chemical entity. This knowledge will make the student competent in regulatorytoxicologicalevaluation. **Objectives:** Uponcompletion of the course, the students hall be able to, Explaint The various types oftoxicitystudies. Demonstratethe practicalskills required to conduct the preclinical toxicity studies. Unit-1Basicdefinitionandtypesoftoxicology(general, mechanistic,regulatoryanddescriptive) Regulatoryguidelinesforconducting toxicitystudiesOECD,ICH,EPAandScheduleY OECD principles ofGood laboratorypractice (GLP) History, concept and its importance indrugdevelopment 12 hrs Unit-2Acute, sub-acute and chronic- oral, dermalandinhalational studies as per OECD guidelines. A cute eye irritation, skinsensitization, dermalirritation n&dermaltoxicity studies. Testitemcharacterization-importanceandmethodsinregulatorytoxicologystudies 12hrsU nit- 3Reproductivetoxicologystudies, Malereproductivetoxicitystudies, femalereproductivestudies (segmentIII), teratogenecitystudies (segmentII) Genotoxicitystudies (Ames Test, invitroan dinvivo Micronucleus and Chromosomal aberrations studies) Invivo carcino genicity studies 12hrs Unit-4:INDenablingstudies(INDstudies)- DefinitionofIND,importanceofIND,industryperspective,listofstudiesneededforINDsubmissionSa fetypharmacologystudies-origin,conceptsandimportanceofsafetypharmacology.Tierl-CVS,CNSandrespiratorysafetypharmacology, HERGassay. Tier2- GI, renalandotherstudies 12hrs Unit-5: Toxicokinetics- Toxicokineticevaluationinpreclinical studies, saturation kinetics Importance and applications of toxic okinetic studies. Alternative methods to an imal toxicity testing 141 12hrs #### REFERENCEBOOKS: 1. Hand book on GLP, Quality practices for regulated non-clinical research $and development (\underline{http://www.who.int/tdr/publications/documents/glp-handbook.pdf).$ - 2. Schedule Y Guideline: drugs and
cosmetics (secondamendment) rules, 2005, ministry of health and family welfare (department of health) New Delhi - 3. DrugsfromdiscoverytoapprovalbyRickNG. - 4. AnimalModelsinToxicology,3rdEdition,LowerandBryan - 5. OECDtestguidelines.PrinciplesoftoxicologybyKarenE.Stine,ThomasM.Brown # PRINCIPLES OF DRUG DISCOVERY (MPL203T) THEORY 60Hours Scope: The subject imparts basic knowledge of drug discovery process. This information will make the student competent indrug discovery process. The subject imparts basic knowledge of drug discovery process. This information will make the student competent indrug discovery process. The subject imparts basic knowledge of drug discovery process. This information will make the student competent indrug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process and the subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process and the subject imparts basic knowledge of drug discovery process. The subject imparts basic knowledge of drug discovery process and the subject imparts basic knowledge of drug discovery process and the subject imparts basic knowledge of drug discovery process and the subject imparts basic knowledge of drug discovery process and the subject imparts basic knowledge of drug discovery process and the subject imparts basic knowledge of drug discovery process and the subject imparts basi # Objectives: Uponcompletion of the course, the students hall be able to, Explaint The various stagesofdrugdiscovery. ☐ Appreciate the importance of the role of genomics, proteomics and bioinformatics indrug TdiscoveryExplainvarioustargetsfordrugdiscovery. | ddrugdesignindrugdiscovery Unit-1:An overview of modern drug discovery process: Target identification, target validation,leadidentificationandleadOptimization. Economics of drug discovery. Target Discovery and validation-Role of Genomics, Proteomics and Bioinformatics. Role of Nucleicacidmicroarrays, Proteinmicroarrays, Antisense technologies, siRNAs, antisense oligonucleotides, Zincfinger proteins. Role of transgenicanimals intarget validation. 12 hrs Unit-2: Lead Identification- combinatorial chemistry& high throughput screening, in silico leaddiscoverytechniques, Assaydevelopmentforhitidentification. Protein structure Levels of protein structure, Domains, motifs, and folds in protein structure.Computational prediction of protein structure: Threading and homology modeling methods. Application of NMR and X-normalization of the protein structure and struct rayerystallographyinproteinstructureprediction 12hrs Unit-3:RationalDrugDesign Traditional vs rational drug design, Methods followed in traditional drug design, Highthroughputscreening, Concepts of Rational Drug Design, Rational Drug Design Methods: andPharmacophorebasedapproachesVirtualScreeningtechniques:Druglikenessscreening,Concept ofpharmacophoremappingandpharmacophorebasedScreening.12hrs Unit-4 Molecular docking: Rigid docking, flexible docking, manual docking; Docking basedscreening. Denovodrugdesign. Quantitative analysis of Structure Activity Relationship History and development of QSAR, SAR versus QSAR, Physicochemical parameters, Hanschanalysis, FeeWilsonanalysisandrelationshipbetweenthem 12hrs Unit-5: QSAR Statistical methods – regression analysis, partial least square analysis (PLS) and other multivariate statistical methods. 3D-QSAR approaches like COMFA and COMSIA Prodrugdesign-Basic concept, Prodrugsto improve patient acceptability, Drug solubility, Drugabsorption and distribution, site specific drugde livery and sustained drugaction. Rationale of prodrugdes ignand practical consideration of prodrugdes ign. 12hrs #### REFERENCEBOOKS: - 1. MouldySioud.TargetDiscoveryandValidationReviewsandProtocols:Volume2Emerging MolecularTargetsandTreatmentOptions.2007HumanaPressInc. - DarrylLeón.ScottMarkelIn. Silico TechnologiesinDrugTargetIdentificationandValidation.2006byTaylorandFrancisGroup,L LC. - 3. Johanna K. DiStefano. Disease Gene Identification. Methods and Protocols. SpringerNewYorkDordrechtHeidelbergLondon. - 4. Hugo Kubiny. QSAR: Hansch Analysis and Related Approaches. Methodsand PrinciplesinMedicinalChemistry.PublisherWiley-VCH - 5. Klaus Gubernator, Hans-Joachim Böhm. Structure-Based Ligand Design. Methods and Principles in Medicinal Chemistry. Publisher Wiley-VCH - Abby L .Parrill.M .Rami Reddy.RationalDrugDesign.Novel Methodology andPracticalApplications.ACSSymposiumSeries; AmericanChemicalSociety: Washington, DC,1999. - J. Rick Turner. New drug development design, methodology and, analysis. John Wiley & Sons,Inc.,NewJersey # CLINICALRESEARCHANDPHARMACOVIGILANCE(MPL204T) THEORY 60Hours Scope: This subject will provide a value addition and current requirement for the students in clinicalresearchandpharmacovigilance. It will teach the students on conceptualizing, designing, conducting, managing and reporting of clinical trials. This subject also focuses on global scenario of Pharmacovigilance in different methods that can be used to generate safety data. It will teach the students in developing a safety data in Pre-clinical, Clinical phases of Drug developmentand postmarkets urveillance. Objectives: Upon completion of the course, the student shall be able Tto, Explaintheregulatory requirements for conducting clinical trial □Demonstrate the types of clinical trial □ designs Explaintheresponsibilities of keyplayers involved inclinica □ltrialsExecute safety monitoring, reporting and close-out □activitiesExplain the principles of $\label{lem:pharmacovigilanceDetectnewadversedrug} \begin{picture}(100,00) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){1$ $\label{lem:perform} FPerform the adverse drug reaction reporting systems and communication in Pharmacovigilance$ Unit-1:RegulatoryPerspectivesofClinicalTrials: Origin and Principles of International Conference on Harmonization - Good Clinical Practice(ICH- GCP)guidelinesEthicalCommittee:InstitutionalReviewBoard,EthicalGuidelinesforBiomedicalResearchandHumanParticipant-Schedule Y,ICMR InformedConsentProcess:StructureandcontentofanInformedConsentProcessEthicalprinciplesgove rning informedconsentprocess 10hrs Unit-2:ClinicalTrials: Typesand DesignExperimentalStudy-RCTand NonRCT,ObservationStudy:Cohort,CaseControl, CrosssectionalClinicalTrialStudyTeam RolesandresponsibilitiesofClinicalTrialPersonnel:Investigator,StudyCoordinator,Sponsor,ContractResearchOrganizationanditsmanagement. 10hrs Unit-3:ClinicalTrial Documentation- Guidelines to the preparation ofdocuments, Preparation ofprotocol,InvestigatorBrochure,CaseReportForms,ClinicalStudyReportClinicalTrialMonitoring-SafetyMonitoringinCT Adverse Drug Reactions: Definition and types. Detection and reporting methods. Severity andseriousnessassessment. Predictability and preventability assessment, Management of adversed rugreactions; Terminologies of ADR. Principal Vaagdevi College of Pharmacy #### Unit-4: Basicaspects,terminologiesandestablishmentofpharmacovigilanceHistoryandprogressofpharmacovigilance,Significanceofsafetymonitoring,PharmacovigilanceinIndiaandinternational aspects, WHO international drug monitoring programme, WHO and Regulatoryterminologies of ADR, evaluation of medication safety, Establishing pharmacovigilance centresinHospitals,IndustryandNationalprogrammesrelatedtopharmacovigilance.Rolesandrespons ibilitiesinPharmacovigilance 10hr Unit-5:Methods, ADR reporting and tools used in Pharmacovigilance International classification of diseases, International Non- proprietary names for drugs, Passiveand Active surveillance, Comparative observational studies, Targeted clinical investigations and Vaccinesa fety surveillance. Spontaneous reporting system and Reporting to regulatory authorities, Guidelines for ADRs reporting. Argus, Aris GPharmacovigilance, Vigi Flow, Statistical methods for evaluating medications a fety data. Unit-6:Pharmacoepidemiology,pharmacoeconomics,safetypharmacology 10hrs #### REFERENCEBOOKS: - 1. CentralDrugsStandardControlOrganization-GoodClinicalPractices,GuidelinesforClinicalTrialsonPharmaceuticalProductsinIndia.NewDelhi:MinistryofHealth;2001. - 2. InternationalConferenceonHarmonizationofTechnicalrequirementsforregistrationofPharmaceut icalsforhuman use.ICHHarmonizedTripartite Guideline.Guideline.Guidelinefor GoodClinicalPractice.E6;May1996 - 3. Ethical GuidelinesforBiomedical Research onHuman Subjects 2000. Indian Council of Medical Research, New Delhi. - 4. Textbook of Clinical Trials edited by David Machin, Simon Day and Sylvan Green, March2005, John Wileyand Sons - 5. Clinical Data Management edited by R K Rondels, S A Varley, C F Webbs. Second Edition, Jan 2000, Wiley Publications # PHARMACOLOGY PRACTICAL-III(MPL205P) #### ListofExperiments - 1. TorecordtheDRCofagonistusingsuitableisolatedtissuespreparation. - 2. Tostudytheeffectsofantagonist/potentiatingagentsonDRCofagonistusingsuitableisolate dtissuepreparation. - 3. Todeterminetothestrengthofunknownsamplebymatchingbioassaybyusingsuitabletissuepr eparation. - 4.
Todeterminetothestrengthofunknownsamplebyinterpolationbioassaybyusing suitabletissue preparation - 5. Todeterminetothestrengthofunknownsamplebybracketingbioassaybyusingsuitabletissuep reparation - 6. Todeterminetothestrengthofunknownsamplebymultiple pointbioassay byusingsuitable tissuepreparation. - 7. Estimation of PA2 values of various antagonists using suitable isolated tissue preparations. - 8. Tostudytheeffectsofvariousdrugsonisolatedheartpreparations - 9. RecordingofratBP,heartrateandECG. - 10. RecordingofratECG #### REFERENCEBOOKS: - 1. The Pharmacological basis of the rapeutics-Goodman and Gillman's - 2. PrinciplesofPharmacology.ThePathophysiologicbasisofdrugtherapybyDavidEGolanetal - 3. BasicandClinicalPharmacologybyB.G-Katzung - 4. PharmacologybyH.P.RangandM.M.Dale. - 5. HandbookofClinicalPharmacokineticsbyGibaldiandPrescott. - 6. TextbookofTherapeutics,druganddiseasemanagementbyET.HerfindalandGourley. - 7. AppliedbiopharmaceuticsandPharmacokineticsbyLeonShargelandAndrewB.C.Yu. - 8. HandbookofEssentialPharmacokinetics, PharmacodynamicsandDrugMetabolismforIndustrialScientists - 9. ApracticalbookofPharmacologybyRameshAlluri - 10. Robbins&CortanPathologicBasisofDisease,9thEd.(RobbinsPathology),AComplete TextbookofMedicalPharmacologybyDr.S.KSrivastavapublishedbyAPC AvichalPublishingCompany # PHARMACOLOGY PRACTICAL-IV(MPL206P) #### ListofExperiments - 1. Drugabsorptionstudiesbyavertedratileumpreparation. - 2. AcuteoraltoxicitystudiesasperOECDguidelines. - 3. AcutedermaltoxicitystudiesasperOECDguidelines. - 4. Repeateddosetoxicitystudies-Serumbiochemical, haematological, urineanalysis, functional observation tests and histological studies. - 5. Drugmutagenicitystudyusingmicebone-marrowchromosomalaberrationtest. - 6. Protocoldesignforclinicaltrial.(3Nos.) - 7. DesignofADRmonitoringprotocol. - 8. In-silicodockingstudies.(2Nos.) - 9. In-silicopharmacophorebasedscreening. - 10. In-silicoOSARstudies. - 11. ADRreporting ### REFERENCEBOOKS - 1. FundamentalsofexperimentalPharmacology-byM.N.Ghosh - 2. HandbookofExperimentalPharmacology-S.K.Kulakarni - 3. Textbookofin-vitropracticalPharmacologybyIanKitchen - 4. ExperimentalPharmacologybyM.C.Prabhakar. - 5. PracticalsinPharmacologybyR.K.Goel - 6. BioassayTechniquesforDrugDevelopmentbyAtta-ur-Rahman,Iqbalchoudharyand WilliamThomsen - 7. AppliedBiopharmaceuticsandPharmacokineticsbyLeonShargelandAndrewB.C.Yu. - 8. HandbookofEssentialPharmacokinetics,PharmacodynamicsandDrugMetabolismforIndustrial Scientists. #### PHARMACEUTICAL CHEMISTRY # MODERNPHARMACEUTICALANALYTICALTECHNIQUES (MPC101T) THEORY 60Hours **Scope:** The appreciable knowledge will be gained by the students in the Modern AnalyticalTechniquesandcanapplythetheoriesintheAnalysisofvariousbulkdrugsandtheirformulations. The students will also be in a position to apply their knowledge in developing thenewmethods forthedeterminationandvalidatetheprocedures. Objectives: The course is designed to impart the knowledge in different analytical techniques like UV-Visible, IR, GC, HPLC etc so that it can be used in the analysis of bulk drugs and formulations. UNITI 12Hours Introduction to chromatography and classification of chromatographic methods based on themechanismofseparation - A. Column Chromatography: Adsortion and partition, materials used for separation, solventsystem, procedureand method ofdetection. Theory, principles involved inseparation, apparatus, column materials, number of theoretical plates, elution, method of detection. Modifications likeVLC,Flash,MPLC,theiradvantage overopencolumnCC. - B. PaperChromatography: Theory, different techniques employed, filter papers used, qualitative and quantitative detection UNITII 12Hours - A. ThinLayerChromatography: Theory, principles of separation, apparatus, coating materials, spotting, solvent systems, detection, Uses of TLC: Finding the number of compounds; the class of compounds; Testing for purity/ detection of impurities; identifying compounds-Co-TLC, MixedTLC; isolating compounds in a pure form-preparative TLC; Two dimensional TLC. - **B. HPTLC:**Theoryandprinciple,instrumentation,elutiontechniquesandpharmaceuticalapplications - C. Acomparativestudy; howis HPTLC is different from TLC, apparatus; Coating materials-particle size; detection; uses. UNITH 12Hours - a. GasChromatography:Introduction,fundamentals,instrumentation,columns:preparation and operation, detection; derivatization. - **b. HPLCandUPLC:**Principles and instrumentation, solvents and columns used Operational modes, detection and applications. UNITIII 12Hours A. Electrophoresis: Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following: a) Paper electrophoresis b) Gelelectrophoresis: (Capillary electrophoresis d) Zone electrophorese) Moving boundary electrophoresis f) Isoelectric focusing **B.** XrayCrystallography:ProductionofXrays,DifferentXraymethods,Bragg'slaw,Rotatingcrystaltech nique,Xraypowdertechnique,TypesofcrystalsandapplicationsofX-raydiffraction. UNITIV 12Hours A. UV- **Visiblespectroscopy:** Theoryandinstrumentationinbrief. Chromophore; Auxochrome; Types of electronic transitions; Solvent effects; Quantitative estimation of Riboflavin. Paracetamol, Diclofenac, Metronidazole, Aspirin.. **B.IRspectroscopy:** Theory, Modes of Molecular vibrations, Samplehandling, Instrumentation of Dispersive and Fourier TransformIRSpectrometer, Factors affecting vibrational frequencies, Quantitative estimation of API susing IRspectroscopy. UNITV 12Hours A. Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer. **B. FlameemissionspectroscopyandAtomicabsorptionspectroscopy:**Principle, Instrumentation,InterferencesandApplications. #### REFERENCES 1. Spectrometric Identification of Organic compounds- RobertMSilverstein, Sixthedition, John Wiley & Sons, 2004. - 2. PrinciplesofInstrumentalAnalysis-DoglasASkoog,F.JamesHoller,TimothyA.Nieman, 5thedition,Easternpress,Bangalore,1998. - ${\it 3.\ Instrumental methods of analysis-Willards, 7 the dition, CBS publishers.}$ 4. PracticalPharmaceuticalChemistry- BeckettandStenlake, VolII, 4th edition, CBSPublishers, New Delhi, 1997. - 5. OrganicSpectroscopy-WilliamKemp, 3rdedition, ELBS, 1991. - 6. Quantitative Analysis of Drugsin Pharmaceutical formulation- PDSethi, 3rdEdition, CBSPublishers, NewDelhi, 1997. - 7. Pharmaceutical Analysis-Modern Methods Part B-JWM unson, Vol 11, Marcel. Dekker Series - 8. SpectroscopyofOrganicCompounds,2ndedn.,P.S/Kalsi,WileyesternLtd.,Delhi. - 9. TextbookofPharmaceuticalAnalysis,KA.Connors,3rdEdition,JohnWiley&Sons,1982. # ADVANCED ORGANIC CHEMISTRY-I (MPC102T) THEORY 60Hours Scope:Subjectisdesignedtoprovidein- depthknowledgeaboutadvancesinorganicchemistry, differenttechniquesoforganicsynthesisand their applicationsto processchemistryaswellasdrugdiscovery. **Objectives:** Theaimofthecourseistoimpartknowledgetothestudentsof: - > Nucleophilicaliphaticsubstitution, - > lectrophilicaromaticsubstitution - > Eliminationreaction, their mechanism and applications. - > Knowledgeofsomenamedorganicreactions, synthetic reagents and their application will be imparted. - Anotherimportantobjectiveofthecourseistointroducethestudenttothechemistryof heterocycliccompoundsasdrugs,byandlarge,haveheterocyclicrings. #### Unit-I # Nucleophilicaliphaticsubstitution: 12Hours S_N1 and S_N2 reactions; mechanism and kinetics; structure and reactivity; stere ochemistry; SN1VsSN2; role of solvent; substitution V selimination; necleophilic substitution—alkylhalides V salcohols; SN1 and rearrangement; stability of carbocations, carbanions, free radicals, carbenes and nitrenes: Their method of formation and synthetic applications. Unit-II 10Hours **Electrophilicaromaticsubstitution:** reactions; mechanism; proofforthemechanism; sulfonation -a reversible reaction; theory of reactivity; theory of orientation; orientation and synthesis. Unit-III 10Hours Elimination reactions: E1 and E2 mechanisms of alkyl halides and alcohols; evidence; E1 VsE2; elimination Vssubstitution; 1,1 and 1,2 elimination; E1CB; Saytzeff's rule; Hofmannrule/elimination; stereochemistry of E2 reactions; elimin ation from a licyclic compounds. Unit-IV 14Hours a) Study of mechanism and synthetic applications of following named Reactions: Ugireaction, Diekmann reaction, Sandmeyer reaction, Mannich reaction, Vilsmeyer-Haackreaction, Beckmannrearrangement, Friesrearrangement, Phillip's condensation and Mic b) SyntheticReagents&Applications: haeladditionreaction. Aluminiumisopropoxide, N- bromosuccinamide, diazomethane, dicyclohexylcarbodimide, Wittingreagent, Osmiumtetroxide, die thylazodicarboxylate, Triphenylphosphine, Lithiumaluminium hydride, Sodiumborohydride, DCC(N,N-diacylohexylcarbodiamide) reagent. # Unit-V 14Hours **A.Heterocylicchemistry:** Structures of heterocylic compounds; aromatic and non aromatic heterocylices; no menclature; **B.Five-membered ring compounds with one heteroatom:**Pyrroles, Furans and Thiophenes;Aromaticity;acidity;basicity; twosyntheticmethodsforeach class; reactions; electrophillicsubstitution; reactions with acids, carbenes, nitrenes; oxidizing and reducing agents; Diels- Alderreaction; photochemical reactions; alkylation of pyroles; metalation of furans; reactions of this phenes with nucleophiles. Compare the reactivity of Pyrroles, Furans and Thiophenes. C. Six-memberedheterocyclicringcompoundswithoneheteroatom: Pyridines: nomenclature; physical and spectroscopic properties; tautomerism; synthetic methods; chemicalreactions—withacids, electrophilicand nucleophilic substitution, Diels-Alderreactions, quaternization, reaction with oxidizing and reducing agents; hetaryne formation; ring opening reactions with free radicals; photochemical reactions; the Claisen rearrangement; der ivatives of pyridine – alkyl and aryl pryidines halopyridines, aminopyridines, pyridine Noxide, hydroxypyridines, pyridine ald
hydroxypyridines. D.Synthesisofheterocycliccompounds: Twomethodsofsynthesisandreactionsofthefollowingheterocyliccompoundsortheirderivatives; a) quinolines b) isoquinolines c) indoles d) pridazines e) pyrimidines f) pyrazines g)thiazolesh)imidazolesi)oxazoles #### REFERENCES - 1. "AdvancedOrganicchemistry,Reaction,MechanismsandStructure",J.March,John WileyandSons,NewYork. - 2. "MechanismandStructureinOrganicChemistry",ESGould,HoldRinchartand Winston,NewYork. - 3. "OrganicChemistry" Clayden, Greeves, Warrenand Woihers., Oxford University Press 2001. - 4. "OrganicChemistry" Volland II.I.L. Finar. ELBS, Pearson Education Lts, Dorling Kindersley India Pvt. Ltd. - 5. AguidetomechanismsinOrganicChemistry,PeterSkyes(OrientLongman,New Delhi). - ReactiveIntermediatesinOrganicChemistry,TandomandGowel,Oxford&IBH Publishers. - 7. PrinciplesofOrganicSynthesis,ROCNormanandJMCoxan,NelsonThorns. - 8. OrganicSynthesis-SpecialTechniques.VKAhluwaliaandRAgarwal,Narosa Publishers. - 9. OrganicReactionMechanismsIVthEdtn,VKAhluwaliaandRKParashar,Narosa Publishers. - 10. HeterocyclicChemistry-J.A.Joule, K.MillsandG.F.Smith3rdEdition, CRC press. - 11. HeterocyclicChemistry-ThomasL.Gilchrist,3rdEdition,Pearsonpublications - 12. HeterocyclicChemistry-RajK.Bansal,7thEdition,NewageInternationalPublishers. # ADVANCED MEDICINAL CHEMISTRY(MPC103T) THEORY 60Hrs #### Scope: The subject is designed to impart knowledge about recent advances in the field of medicinal chemistry at the molecular level including different techniques for the rational drug design. **Objective:** The objective of the course is to impart knowledge in - Drugdiscovery - > Roleofmedicinalchemistryindrugresearch - > Differenttechniquesfordrugdiscovery - > Variousstrategiestodesignanddevelopnewdruglikemoleculesforbiologicaltargets - > Thecourseisalsoimpartsknowledgeabout different classesofdrugs, theirorigin, mechanismofaction, use, toxicityetc. Unit-I 12Hours Abriefreviewofthefollowingtopics: - a. SourcesOfNewDrugs; - b. LeadsFromNaturalProducts; - c. MolecularModifications; - d. RandomScreening; - e. HighThroughtPutScreening; - f. InsilicoScreening; - g. StructuralFeaturesAndPharmacologicalAcivity; - h. Prodrugs; - i. SoftDrugs; - j. Isosterism Unit-II 12Hours An account of their originand development, classification, structures, mechanism of action, SAR, uses and to xicity of: - a. Analgesics(non-opioid)andantipyretics - b. Non-steroidalanti-inflammatoryagents - c. SynnthesisofParacetamol,Ibuprofen,Aceclofenac - d. Antidiabeticagents - e. SynnthesisofTolbutamide,Chlopropamide,Glipizide,Glimepride,Metformin - d.Screeningmethodsoftheseclasses An account of their originand development, classification, structures, mechanism of action, SAR, uses and to xicity of: - a. β-Adrenergicblockers - b. ACEinhibitors - c. Diuretics - d. Synthesis of Propranolol, Hydralazine, Minoxidil, Captopril, Lisinopril, Furosemide, Hydrochlorthiazide - e. H₁-receptorantagonists - f. H₂-receptorantagonists - g. Gastric-ProtonPumpInhibitors - h. SynthesisofLevocitrizine,Ranitidine,Omeprazole - i. Screeningmethodsoftheseclasses Unit-IV 12Hours $\label{lem:contoftheir originand development, classification, structures, mechanism of action, SAR, uses and to xicity of:$ - a. Anthihyperlipidemicagents - b. Phosphodiesteraseinhibitors - c. Quinoloneantibacterialagents. - d. Screeningmethodsoftheseclasses Unit-V 12Hours Anaccount of their originand development, classification, structures, mechanism of action, SAR, uses and to xicity: - a. Anticanceragents - b. Antiviralagents - c. Immunosupressantsandimmunostimulatns - d. SynthesisofChlorambucil,Methotrexate,Stavudine - e. Screeningmethodsoftheseclasses #### BooksRecommended: - Textbook of Wilson and Gisvolds organic medicinal and pharmaceutical by Charles Owens Wilon, 12th edition, 2010, publisher: Lippincott Williams & Wilkins . Foye's principles of medicinal chemistry - 2. Burger'smedicinalchemistryanddrugdiscovery - 3. Organicchemistryofsyntheticdrugs-Lednier - 4. Screeningmethodsinpharmacology-RobertA. Turner. - 5. DrugEvaluation-Vogel. - 6. Evaluation of Drug Activities Lawrence and Bachrach. - 7. MethodsinPharmacology-Swarbrick. - 8. MedicinalChemistry-SurendranathPandeya,VolumeIandVolumeII - 9. MedicinalChemistry-Ashutoshkar,NewAgeInternationalPublications - 10. Pharmacopoeias # CHEMISTRYOFNATURALPRODUCTS(MPC104T) THEORY 60Hrs Scope: The subject is designed to provide a detailed knowledge about chemistry, biological activity, mechanism of action, SAR, toxicity, and use of medicinal compounds of natural origin, theirsemisynthetic derivatives and development of clinically used drugs taking natural products asleads. Objectives: Theobjectivesofthiscoursearetoimpartknowledgetostudentsof: - > Differenttypesofnaturalcompounds, their chemistry and medicinal importance. - > Hownaturalcompoundsactasdrugsperseandasleadmoleculesindrugdiscovery. - > Howstructures are important for biological activity and how a change instructure affects biological activity. - > Howbiotechnologyiscontributingtothedevelopmentofpharmaceuticalsofnatural origin. UNIT-I 10Hrs - (a) Naturalproducts as leads in drugdiscovery and development: How natural products acted as lead molecules indrugdiscovery and development with emphasis on the source of the natural compound, history/origin, how synthetic drugs were devoloped from them . From: - a. Salicintoaspirin - b. Quininetoantimalarials - c. Cocainetolocalanaesthetics - d. Curarealkaloidstoneuromuscularblockingdrugs. - e. Fungalmetabolitestomodernstatins - f. Snakevenomtoantihypertensives - (b) RecombinantDNAtechnologyanddrugdiscovery. UNIT-II 10Hrs - a. Alkaloidsofopium: Structure of morphine; peripheral groups; - modification in pheripheralgroups and effect on analgesic / biologic activity; relative potencies; opioidreceptors; endorphins and enkephalins. - b. Ring analogues of morphine; morphinans-levorphanol and butorphanol; benzomorphans-pentazocineandphenazociane; aminotetralins-dezocine; 4-phenylpiperidines- meperidine(pethidine);4-Anilidopiperidinesorthefentanylgroup- fentanyl,alfentanyl,sufentanyl,remifentanil, lofentanil; diphenylheptanone derivativesmethadone; structures; receptoraffinities;relative potencies;advantages ofthesecompounds;structuraldifference between4-phenyland4-anilidopiperidines. c. Opioidantidiarrheals-Howstructuralmodification of 4- phenylpiperidinesandmethadoneledtothediscoveryofdiphenoxylateandloperamidestructures.Mode ofaction;usage;metabolism of diphenoxylate; diphenoxin; combination with a tropine; binding of these compounds to opioid receptor; abuse potential; use. # d. Antitissueagents(opioid) Studyofcodeine, hydrocodone hydromorphone, no scapine, dextromethorphan, levopropoxyphene, pholcodine. Their structures, relative advantages, uses.Relationshipbetweenlevorphanolanddextromethorphan; betweenlevopropoxypheneandmetha done. e. **Morphineantagonists-**Nalorphine,levallorphan,naloxone,naltrexone,nalmefene,cyclazocine. Structures; a comparative study of the structures of levorphanol and levallorphan,oxymorphone,naloxoneandnaltrexone,cyclazocineandpentazocine;receptoraffinities; relativeadvantages,uses. UNIT-III 10Hours # Anticanceragentsofnaturalorigin: - a. Anticanceragentsofplantorigin:Source;structures;descriptionofthestructuralfeatures; - SAR; semisynthetic derivatives; mechanismofaction; toxicity; and uses of: - (1) Vincristine and vin blastine - (2) Podophyllotoxin - (3) Taxol - (4) Camptothecin - (b) Anticancerantibiotics:source;structures;descriptionsofthestructuralfeatures;mechanismofact ion;SAR;andusesofthefollowingantibiotics: - (1) Dactinomycin - (2) Daunorubicin,doxorubicin(adriamycin),idarubicin;metabolismofdaunorubicinand doxorubicin; analogous of doxorubicin esorubicin,epirubicin,pirarubicin,valrubicin. - (3) Abriefaccountofnogalamycin, menogaril, mithramycin, mitomycins, streptozocin - (c) Anticanceragentsfrommarineorganisms:bryostatin,dolostatin. UnitIV 20Hours ### Steroids: - (a) **Definition**;numberingthecarbonsandlabellingtherings;somebasicsteroidskeleta;nomenclature; sterochemistry; chemical and physical properties of steroids; changes to modifypharmacokineticsproperties ofsteroids. - (b) **Sources of steroid drugs:** source and structures of cholesterol, ergosterol, stigmasterol anddiosgenin, history of development of steroid industry. Marker's synthesis. - (c) Steroidalantiinflammatoryagents:structures; SAR; routes of administration; mainpharmacologic effects-immuno-suppression, anti-allergicandantiinflammatory; therapeutic users; toxicity; contraindications; esters and salts of corticoids and their formulation suitability. A detailed study of the following classes with additional information indicated. - (i) Systemicglucocorticoids: list of compounds and their derivatives; classification; interconversion of cortisone and hydrocortisone; prednisone and prednisolone; rationale behinddevelopment of so many glucocorticoids; effect of substituent groups on glucocorticoid/mineralocorticoidactivity; relative potencies; derivatives; formulation. (ii) **Topical glucocorticoids**; systemic absorption; determining relative potency; classification; compounds used; formulations; the 21-chlorocorticoids; non-fluorinated compounds; their relation to known corticoids; metabolism of prednicarbate and its lowsystemic side effects. (iii) Inhaled and intranasalglucocorticoids: pharmacokinetics properties/qualities desirable for these compounds; modification of pharmacokinetics through modification of structures and its consequences; special qualities of the new inhaled and intranasal glucocorticoids; characteristics of inhaled glucocorticoids used in a structure and allergic rhinitis; names of inhalers. - (iv) **Ophthalmicglucocorticoids**: Difference instructure between ophthalmic and other glucocorticoids. - (d) Steroidalantifertilityagents:History;estrogens;pregnaneprogestins;androstanes;importance s of ethisterone; development of 19-norandrostanes; structures; mechanism of action;role of
estrogens; regimens; toxicity; metabolism of desogestrel and norgestimate; androgenicactivity; uses of medroxyprogesterone, norethindrone, magestrol acetate. Progestinantagonists.Steroidreceptors-newinsights. - (e) Anabolicsteroids: Rationale for development; 19-norandrogens (19- nortestosteronederivatives);androstanes;oxasteroids;heterocyclicringfusedcompounds;experimentalcompounds;structures;therapeuticuses;sideeffects. (f) Steroidsinthetreatmentofcancers: Estrogens; antiestrogens; aromatase inhibitors; progestins; progestin antagonists; androgens and anabolic steroids; antiandrogens; 5α -reductase inhibitors; gonadotropininhibitors; glucocorticoids. UNITV 10Hours Cephalosporins: REFERENCE Historicalbackground; classification; structures; numbering thering system; nomenclature; degradation; spectrum of activity; SAR; β -lactamase resistance; antipseudomonal cephalos por ins; mechanismo faction; uses; toxicity; development of new cephalos por ins-recent advances; prodrugs incephalos por ins; penicillins V scephalos por ins-acomparative account of the structural features and biological activity; β -lactamase inhibitors; mechanism of β -lactamase inhibitors; mechanism of β -lactamase inhibitors; monobactams. 1. TextbookofWilsonand Gis volds or ganic medicinal and pharmaceutical by Charles Owens Wilson, 12 the dition, 2010, publisher: Lippin cott Williams & Wilkins. 2. Foyesprinciplesofmedicinalchemistry,7theditionbyLemke, ThomasL,8thedition,2019,LippincottWilliams&Wilkins. - 3. Burgersmedicinalchemistry,drugdiscoveryanddevelopmentbyDonaldJ.Abraham, 8volumes,8th edition,2021. - 4. Organic Chemistry Of Natural Products, volumes 1 & 2, Gurdeep Chatwal, Himalayapublishinghouse. - 5. Organicchemistryofnaturalproducts, volumes 1 & 2, O.P. Agarwal. - 6. Organicchemistry, volume 2, I.L. Finar, 5thedition, 1975. - 7. Elementsofbiotechnology, P.K. Gupta, Rastogipublishers. - 8. Pharmaceuticalbiotechnology, S.P. Vyas & V.K. Dikshit, CBS Publishers. # CHEMISTRYOFNATURALPRODUCTS(MPC105P) - 1. Isolationandpurification of some of the following natural products. - a. Piperinefromblackpepper - b. StrychnineandBrucinefromStrychnosnuxvomicaseeds - c. CaffeinefromTeaPowder - d. CurcuminfromTurmeric - e. BixinfromBixaorellanaseeds - f. DiosgeninfromDiascoriatubers - g. SennosidesfromSennaleaves - h. EmbelinfromEmblicaribesfruits - 2. The use of column, flash and cuumliquidch matographies for isolating some of the above mentioned phytoconstituents 3. - 1. IdentificationofalkaloidsinmixturebyTLC. - 2. PreparativeTLCforseparationandisolation of alkaloids - 3. Identification of phytoconstituents like alkaloids, steroids, flavanoids etcinplant extracts by TLC. - 4. Separationofsugars/aminoacidsbypaperchromatography. - 5. SeparationofcompoundsbyHPLC - 6. Analysisofrecordedspectraofsomesimpleorganiccompounds. - 7. Teststodetectalkaloids, steroids, flavanoids and their glycosides. #### BooksRecommended: - 1. Naturalproducts, alaboratoryguide-RephaelIkan. - 2. Laboratoryhandbookforthefractionofnaturalextracts— Peter J. Houghton & Amala Raman. - 3. AnAtlasofTLC-H.Wagner. # ADVANCEDMEDICINALCHEMISTRY-I(MPC106P) 1. Synthesis, purification and identification some of the followingdrugs.a)Sulfanilmideb)Uracilc)Phenytoind)Ibuprofene)para- Aminosalicylicacid(PAS)f)Paracetamol g)Atenolol(h)proranolol.i)Benzocaine - 2. Screeningforthefollowingactivities - CNS-RotarodexperimentCatatoniatesting - Experimentsonisolatedtissues—Testingforanti-histaminicandanti-cholinergicactivities. - Localanestheticactivity. - 3. Spectralanalysis: - Spectratoberecordedforsomecompounds and analyzed. - Analysisofpre-recordedspectra. # BooksRecommended: PracticalOrganicChemistry-Vogel. Organicchemistryofsyntheticdrugs-Lednicer. #### **SEMESTER-II** # Spectroscopic Identification of Organic Compounds # (MPC201T)THEORY 60Hours # Objective: StudentsofM.Pharm,Pharmaceutical/MedicinalChemistrybranchcarry outresearchinIIIandIVsemesters.Theysynthesizeorganiccompoundsorisolatenaturalcompoundsan dscreenthemforbiological activity. They have to characterize the compounds. This helps in identifying organic compounds by spectroscopic means. The aim of this course is to train the student in the spectroscopic techniques so that he will be able to interpret different spectra andelucidate/confirmthestructureofcompoundshehasisolated/synthesized. Therefor e, the emphasis while teaching the subjects hould be on the applications of the techniques. A detailed study of applications of the following spectroscopic techniques in the determination of structure of the following classes of compounds with the helpofs implee xamples is to be taught. (i) Alkanes and cycloalkanes (ii) Alkanes and alkynes (iii) Aldehydes and ketones (iv) Alcohols and phenols (v) Carboxylicacids and derivatives (vi) Aromatic compounds and arenes (vii) Amines (viii) Alkylandarylhalides (ix) Simple heterocyclic compounds. The following techniques to be taught: UnitI: 10Hours - **a. UV Spectroscopy**: Woodward-Fieser rules; Applications of UV-Visible spectroscopy instructuralelucidation; Studyofketo-enoltautomerism; Solvingproblems. (3-4Hours) - b. IR spectroscopy: Theory and instrumentation in brief. Molecular vibrations; Factorsinfluencing vibrational frequencies; Sampling techniques; Finger print region; Study ofKeto-enol tautomerism; intra & inter-molecular hydrogen bonding; Studying progress inChemical reactions; geometric and rational isomerism; Conformational analysis; spectralfeaturesofClassesofcompoundsindicatedabove.Solving problems.(6-7 Hours) #### UnitII: Massspectrometry: 12Hours Theoryandinstrumentation.Ionizationtechniques-EI,CI,ESI,FAB,MALDIetc.Highresolution MS; Molecularions; importantfeatures of molecular ion peak; Determination ofmolecular formula; Mc Lafferty rearrangement; Metastable ions or peaks; Isotope peaks, Thenitrogen rule; general fragmentation modes; Fragmentation in the classes of compounds indicated above. Problems and their solution. UnitIII:¹HNMR 10Hours Theoryandinstrumentationinbrief. Solvents; Number of signals chemical equivalence, stereochemical equivalence in predicting the number of signals. intensity of signals; Chemical shift; factors influencing chemical shift; Spin-Spin Coupling; Coupling Constants; long-range coupling; Shielding and deshielding; Magnetic anisotropy; Protons on oxygen and nitrogen; Protonex change; NMR spectra of the classes of compounds indicated above. Problems and their resolution. College of 179 # UnitIV:13CNMR,DEPTand2DNMR 18Hours - a. Differences between¹H and ¹³C NMR; Chemical shifts and scale; proton-coupled and proton-decoupled¹³Cspectra;Off-resonancedecoupling;Solvents;Couplingofcarbontodeuterium,fluorineandphosphorus;Spectra of the classes of compounds indicated above. Problems and their solution. - b. AnaccountofDEPT.InterpretationofDEPTspectra. - ${\bf c.} \quad {\bf Abrief account of the following 2DNMR techniques} \quad {\bf with emphasis on the interpretation} \quad {\bf of the spectra and their use}.$ - (a) COSY(b)HETCOR(c)HSQC,HMBC(d)HMBC Problems and their solution: Students are to be provided with the spectra of simple compounds and taught their interpretation. How they help in confirming the structural features, the H and H and H CNMR assignments of compounds is to be taught. #### UNITY: Problems and their solution. 10Hours Determination of structures using a combination of spectra/spectral data. Here the emphasis isonsolvingproblemsthroughinterpretationofdifferentspectraordatalikeUV,IR,Mass, Hand ¹³ C NMR including 2D-NMR spectra. Simple problems to be worked from books like Pavia,Silverstein, Field etc., mentioned under the "Books recommended" sections, apart from otherbooks. #### BooksRecommended: - 1. OrganicChemistry-MorrisonandBoyd-alongwiththestudyguide. - 2. Spectroscopy-Pavia, Lampman, Kriz, Vyvyan-Publisher: Book/cole, Cengagelearning. - 3. Spectroscopicmethodsofidentificationoforganiccompounds-Silverstein, Webster, Kiemle, Bryce. 8th edition-Wiley. - 4. StructureelucidationbymodernNMR.aworkbook-Duddeck,DetrichandToth. - 5. Elementaryorganicspectroscopy-Y.R.Sharma.Publisher:S.Chand. - 6. Spectroscopyoforganiccompounds-P.S.Kalsi.Publisher:NewAgeInternational Publisher. - 7. Organicstructures from spectra-L.D. Field, H.L. Li, A.M. Magill-6thedition-Wiley. - 8. Organicstructuresfrom2DNMRspectra-L.D.Field,H.L.Li,A.M.Magill-Published2015-Wiley. - 9. Websites # ADVANCEDORGANICCHEMISTRY-II(MPC202T) THEORY 60Hours **Objective:** Theaimofthecourseistoimpartknowledgetothestudentof: - > retrosynthesis - > chiralsynthesis - greenchemistry - > peptidechemistry - catalysis UnitI: 12Hours Synthonapproachandretrosynthesisapplications i. Basicprinciples, terminologies and advantages of retrosynthesis; guidelines for dissection of molecules. Functional group interconvertion and addition (FGI and FGA), chemioselectivity, regions electivity. - ii. C-Xdisconnections; C-Cdisconnections-alcoholsandcarbonylcompounds; 1,2-, 1,3-,1,4-, - 1,5-,1,6-difunctionalized compounds - iii. Strategiesforsynthesisofthree, four, five and six-memberedring. UnitII: 12Hours Stereochemistryandchiralsynthesis **a.Basicconceptsinstereochemistry**—opticalactivity,specificrotation,racematesandresolution ofracemates, the Cahn, Ingold, Prelog (CIP) sequence rule, meso compounds, pseudoasymmetric centres, axes of symmetry, Fischers D and L notation, cis-trans isomerism, E and Znotation. **b.** Chiral drug synthesis: Introduction to chiral drugs; importance of stereochemistry in drugaction; concepts of eutomer; distomer and eudesmic ratio, stereospecific and stereoselectivesynthesis; synthesis of chiral drugs like Ibuprofen, Propranolol, Ramipril, Levofloxacin. UnitIII 12Hours - a. Green chemistry: Introduction, Green reagents; ionic solvents; phase transfer catalysis ingreensynthesis;applicationofphasetransfercatalystsingreensynthesisofheterocycliccompounds; Williamson'ssynthesis, Wittingreactions. - **b.** Microwaveassistedreactions:
Meritanddemeritsofitsuse, increased reaction rates, mechanism, su perheating effects of microwave, effects of solvents in microwave assisted synthesis, microwave technology in process optimization, its applications in various organic reactions and heterocycles synthesis - c. Microwaveassistedsynthesis:Introduction;microwavereactionsinwater(Hofmannelimination, hydrolysisandoxidation);microwavereactionsin organicsolvents; solidstatereactions;advantagesofmicrowavetechnique. UnitIV 12Hours # a. Chemistryofpeptides: Definition, C-terminal and N- terminal concept, end group analysis, Abriefaccount on pharmaceutical importance of peptides and proteins. b. Couplingreactionsinpeptidesynthesis - c. Principlesofsolidphasepeptidesynthesis,t-BOCandFMOCprotocols,varioussolidsupports and linkers: Activation procedures, peptide bond formation, deprotection and cleavagefrom resin, low and high HF cleavage protocols, formation of free peptides and peptide amides, purification and case studies, site-specific chemical modifications of peptides - d. Segment and sequentialstrategies for solution phase peptide synthesis with any two casestudies UnitV 12Hours Catalysis: Typesofcatalysis, heterogeneous and homogenous catalysis, advantages and disadvantages a. Heterogeneouscatalysis- Preparation, characterization, kinetics, supported catalysts, catalyst deactivation and regeneration, some examples of heterogeneous catalysis used in synthesis of drugs. - **b.** Homogenouscatalysis, hydrogenation, hydroformylation, hydrocyanation, Wilkinson catalysts, chiralligands and chiralinduction, Ziegler-Nattacatalysts, some examples of homogenous catalysis used in synthesis of drugs - c. Phasetransfercatalysis-theoryandapplications #### REFERENCES - 1. "AdvancedOrganicchemistry,Reaction,mechanismsandstructure",JMarch,JohnWileyands ons.NewYork. - 2. "Mechanismandstructureinorganicchemistry", ESGould, HoldRinchartand Winston, New York. - 3. "OrganicChemistry" Clayden, Greeves, Warrenand Woihers., Oxford University Press 2001. - 4. "OrganicChemistry" Volland II.I.L. Finar. ELBS, Sixthed., 1995. - 5. Carey, Organic chemistry, 5thedition (VivaBooksPvt.Ltd.) - 6. Organicsynthesis-thedisconnectionapproach, S. Warren, WilyIndia - 7. Principlesoforganicsynthesis, ROCNorman and JMCoxan, Nelsonthorns - 8. Organicsynthesis-SpecialtechniquesVKAhluwaliaandRAggarwal,NarosaPublishers. - 9. OrganicreactionmechanismsIVedtn,VKAhluwaliaandRKParashar,NarosaPublishers. - 10. TheoryandpracticeofGreenChemistry-PaulTAnastasandJohnC.Warner - 11. NewtrendsinGreenChemistry-V.K.AhulwaliaandM.Kidwai - 12. ChiroTechnology-RogerA.Sheldon # COMPUTERAIDEDDRUGDESIGN(MPC203T) THEORY 60Hrs # Scope: The subject is designed to impart knowledge on the current state of the arttechniques involved incomputer assisted drugdesign. # Objectives: Atcompletionofthiscourseitisexpectedthatstudentswillbeabletounderstand - RoleofCADDindrugdiscovery - ➤ DifferentCADDtechniquesandtheirapplications - > Variousstrategiestodesignanddevelopnewdruglikemolecules. - Workingwithmolecularmodelingsoftwarestodesignnewdrug molecules - > Theinsilicovirtualscreeningprotocols - Analyzeeffectivityofnew moleculesfrommedicinalchemistryperspective - > Correlatebiologicalresponsesofmolecules with different attributes # Unit 1. Introduction to Computer Aided Drug Design (CADD) 12Hrs History, different techniques and applications. Quantitative Structure Activity Relationships: Basics, History and development of QSAR:Physicochemicalparameters:Hydrophobicity(Thepartitioncoefficient(P),Thesubstituenthyd rophobicityconstant(π),Pversusπ);Electroniceffects(TheHammettsubstituentconstant(sigmaσx),and stericeffects(TaftstericandMRparameters).Methodstocalculatephysicochemicalparameters,withe xamplessuchascalculationoflogPofchlorobenzene,benzamideandm-chlorobenzamide:HammettequationExperimentalandtheoreticalapproachesforthe determination of these physicochemical parameters explanation for steric and electronic factors and Craig plot andTopliss scheme. Quantitative Structure Activity Relationships(QSAR): ApplicationsHanschanalysis,FreeWilsonanalysisandrelationshipbetweenthem,Advantagesanddisa dvantages; Deriving 2D-QSAR equations. 3D-QSAR approaches and contour map analysis. Statistical methods used in QSAR analysis and importance of statistical parameters. # Unit2:PharmacophoreMappingandVirtualScreening 12Hrs Conceptofpharmacophore, pharmacophore mapping, identification of Pharmacophore features and Pharmacophore modeling; Conformational search used in pharmacophore mapping. In Silico Drug Design and Virtual Screening Techniques: Similarity based methods and Pharmacophore based screening, structure based In-silico virtual screening protocols. Different chemical and drug databases used invirtual screening. #### Unit3:MolecularModelingandDocking 12Hrs a) MolecularandQuantumMechanicsindrugdesign.BriefintroductiontoDFT(DenistyFunctional Theory) b) EnergyMinimizationMethods:comparisonbetweenglobalminimumconformationandbioactive conformation c) Molecular docking and drug receptor interactions: Rigid docking, flexible docking and extraprecision docking. Different types of Scoring functions. Agents acting on enzymes such as DHFR,HMG-CoAreductaseand HIV protease, cholineesterase(AchE&BChE) Unit4:MolecularPropertiesandDrugDesign 12Hrs - a) PredictionandanalysisofADMET(Absorption,Distribution,Metabolism,Excretionand Toxicity)properties of new moleculesanditsimportanceindrugdesign. - b) Denovodrug design:Receptor/enzyme-interactionanditsanalysis,Receptor/enzymecavitysizeprediction,predictingthefunctionalcomponents of cavities,Fragmentbaseddrugdesign. - c) Homologymodelingandgenerationof3D-structureofprotein. methodsandmathematicalexpressions,Proteinstructurevalidation, activesiteprediction Unit5:Moleculardynamicsimulation(MDS)studies 12 HrsIntroduction to MDS and software tools employed. Different file formats in GROMACS.Detailedprocess of protein inwater and protein-ligand complex inwater MDS. Analysis of MDStrajectories: RMSD(Root Mean Square Deviation),RMSF(Root Mean Square SquareFluctuation),Radiusof Gyrationandhydrogenbondanalysis.BriefmathematicalconceptofMM- PBSA(MolecularMechanics-Poisson-BoltzmannSurfaceArea) REFERENCES - $1.\ Computational and structural approaches to drug discovery, Robert MS troud and Janet. FMoore, RCSP ublishers.$ - 2. IntroductiontoQuantitativeDrugDesignbyY.C.Martin,CRCPress,Taylor&Francisgroup... - 3. DrugDesignbyAriensVolume1to10,AcademicPress,1975,ElsevierPublishers. - 4. PrinciplesofDrugDesignbySmithandWilliams,CRCPress,Taylor&Francis. - $5. \ The Organic Chemistry of the Drug Design and Drug action by Richard B. Silverman, Elsevier Publishers.$ - 6. MedicinalChemistrybyBurger,WileyPublishingCo. - 7. Justin A. Lemkul. FromProteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular. Simulation Package [Article v1.0]. Living J. Comp. Mol. Sci. 2019, 1(1), 5068.https://doi.org/10.33011/livecoms.1.1.5068(MDS)8.https://doi.org/10.3390/pr9010071OutiM.H.S alo-Ahen, Ida Alanko, et al., Molecular Dynamics Simulations in Drug Discovery and PharmaceuticalDevelopment.Development.Processes2021,9,71.https://doi.org/10.3390/pr901007199. GonçaloC.Justino1,2|CatarinaP.Nascimento2 |MartaC.Justino 2,3. Molecular dynamics simulations and analysis for bioinformatic sundergraduate students. Biochem Mol Biol Educ. 2021; 49:570-582. DOI: 10.1002/bmb. 21512 - 10. ComputationalMedicinalChemistryfor DrugDiscovery. EditedByPatrickBultinck, HansDeWinterWilfriedLangenaeker,JanP.Tollenaere - 11. ErchengWang, Huiyong Sun, Junmei Wang, Zhe Wang, Hui Liu, John Z.H. Zhang, and Tingjun Hou. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design Chemical Reviews 2019 119 (16), 9478-9508. DOI:10.1021/acs.chemrev.9b00055 - 12. Tingjun Hou, Junmei Wang, Youyong Li, and Wei Wang. Assessing the Performance of the MM/PBSA and MM/GBSA Methods. - 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. Journal of Chemical Information and Modeling 2011 51 (1), 69-82. DOI:10.1021/ci100275a - 13. SamuelGenheden& UlfRyde(2015)TheMM/PBSAandMM/GBSAmethods to estimateligand-binding affinities, Expert Opinion on Drug Discovery, 10:5, 449-461, DOI:10.1517/17460441.2015_1032936 ## ADVANCEDMEDICINALCHEMISTRY-II(MPC204T) THEORY 60Hours Scope The subject is designed to impart knowledge about recent advances in the field of medicinal chemistry at the molecular level including different techniques for the rational drug design. **Objective:** The objective of the course is to impart an in- depthknowledgeofsyntheticdrugsbelongingtodifferentclasses, theirorigin, mechanismofaction, SAR, use and toxicity. UnitI: 12Hours Psychopharmacological agents: Biochemical basis of mental disorders; abnormal protein factors; endogenous amines and related substances; faulty energy metabolism; genetic disorders and nutritional disorders; phenothiazines — chemistry; synthesis. Screening methods; pharmacological actions; SAR; mechanismo faction; uses; toxicity; ringanalogues of phenoth iazines; fluorobuty rophenones; Developmento fatypical antipsychotics. of Chlor promazine, Prochlor perazine, Fluphenazine, Haloperidol. UnitII: 12Hours Anxiolytics, Sedatives And Hypnotics: Screening methods; Benzodiazepines and related compounds; barbiturates; other classes; mechanism of acition, SAR; uses and toxicity Synthesis of Chlordiazepoxide, Diazepam, Alprazolam, Phenobarbital, Meprobamate. UnitIII: 12Hours Antidepressants: MAOinhibitors; tricylic antidepressants; SAR; mechanism of action; uses;toxicityotherclasseslike:selectiveserotoninreuptakeinhibitors,selective5-HTandNEreuptake inhibitors;selectiveserotoninergicreuptake inhibitorsand5-HT2Aantagonists;5-HT1Aagonistsandpartialagonistsando2-antagonists.SyntheisofTranycypromine,Amitriptyline,Fluoxetine,Buspirone. UnitIV: 12Hours Antiepileptics&CNSstimulants: a. Antiepileptics:Screeningmethods; classification of epilepsies;
symptoms; drugsused; classification; structural feactuers common to drugs; SAR; mechanism of action; toxicity and uses; synthesis of Diphenylhydantion, Carbamazepine, Sodium Valproate. b. CNS stimulants: an account of the drugs with CNS stimulant activity; structures and uses. UnitV: 12Hours RationalDesignofEnzymeInhibitors Enzyme kinetics & Principles of Enzyme inhibitors, Enzyme inhibitors in medicine, Enzymeinhibitors in basic research, rational design of non-covalently and covalently binding enzymeinhibitors. 185 #### BooksRecommended: - 1. WilsonandGisvold'stextbookofpharmaceuticalorganicmedicinalchemistry. - 2. Foye'sprinciplesofmedicinalchemistry. - 3. Burger'stextbookofmedicinalchemistry - 4. Organicchemistryofsyntheticdrugs-Lednicer. - 5. Screeningmethodsinpharmacology-RobertA.Turner. - 6. DrugEvaluation-Vogel. - 7. EvaluationofDrugActivities-LawrenceandBachrach. - 8. MethodsinPharmacology-Swarbrick. - 9. MedicinalChemistry-SurendranathPandeya,VolumeIandVolumeII - 10. MedicinalChemistry-Ashutoshkar,NewAgeInternationalPublications - 11. Pharmacopoeias # ADVANCEDORGANICCHEMISTRY-I(MPC205P) Someofthefollowingexperimentstobetaught. - 1. BasicTechniques: - a) Calibrationofthermometerandfindingmeltingpoint, mixed melting point and boiling point. - b) Purificationanddryingoforganicsolvents - c) Crystallization - d) Distillation, Fractional Distillation, Distillation under reduced pressure - ${\bf 2.}\ Separation and identification of organic compounds from binary mixtures:$ Solid-solid, solid-liquidandliquid-liquid-atleastonemix ture of each category to be done. - 3. Synthesisofsomeofthefollowingheterocycliccompounds: - a)Quinolineb)benzimidazole/derivativec)flavone/chromoned)indole/derivativee)phenothiazinef) oxazole/oxazolone g)benzoxazole h)3,5 dimethylisoxazole - 4. Someofthefollowing reactions: - 1. Beckmann rearrangement 2) Fries rearrangement 3) Acetylation, methylation 4) Metal/acidreductions 5) Oppenauer oxidation 6) Friedel-Craafts alkylation & Acylation 7) Nitration using different reagents BooksRecommended: PracticalOrganicChemistry-Vogel. # ADVNCEDMEDICINALCHEMISTRY(MPC206P) - 1. Synthesis, purification and identification of some of the following drugs; - a) Dapsone - b) Benzocaine - c) Hydralazine - d) Imipramine - e) Sufadiazine - 2. Synthesisusingmicrowaveoven:oneexperimenttobeconducted - 3. Screeningforthefollowingactivities: - a) Analgesicactivity - b) Antiinflammatoryactivity - c) Acutetoxicitystudies - d) Antibacterial and antifungal activity - e) Freeradicalscavengingandanti-oxidantactivities 4. SpectralanalysisSpectratoberecordedforsomecomp oundsandanalyzed.Analysis ofpre-recordedspectra 2.Impurityprofilingforoneortwosa # BooksRecommended: - 1. PracticalOrganicChemistry-Vogel. - 2. Organicchemistryofsyntheticdrugs-Lednicer. # PHARMACEUTICALANALYSIS # .MODERNPHARMACEUTICALANALYTICALTECHNIQUES(MPA101T) 10 Hours THEORY Scope: The appreciable knowledge will be gained by the students in the Modern Analytical Techniques and their Analysis various bulk drugs theories in the of the can formulations. The students will also be in a position to apply their knowledge in developing the new methods for the determination and validate the procedures. **Objectives:** The course is designed to impart the knowledge in different analytical techniques like UV-Visible, IR, GC, HPLC etc so that it can be used in the analysis of bulk drugs and formulations. 12Hours UNIT I Introduction to chromatography and classification of chromatographic methods based on the mechanism of separation A. Column Chromatography: Adsorption and partition, materials used for separation, solvent system, procedure and method of detection. Theory, principles involved in separation, apparatus, column materials, number of theoretical plates, elution, method of detection. Modifications like VLC, Flash, MPLC, their advantage over open column CC. B. Paper Chromatography: Theory, different techniques employed, filter papers used, qualitative and quantitative detection 12Hours UNIT II A. Thin Layer Chromatography: Theory, principles of separation, apparatus, coating materials, spotting, solvent systems, detection, Uses of TLC: Finding the number of compounds; the class of compounds; Testing for purity/ detection of impurities; identifying compounds-Co-TLC, Mixed TLC; isolating compounds in a pure form-preparative TLC; Two dimensional TLC. B. HPTLC: Theory and principle, instrumentation, elution techniques and pharmaceutical applications C. A comparative study; how is HPTLC is different from TLC, apparatus; Coating materials-particle size; detection; uses. 12Hours UNIT II a. Gas Chromatography: Introduction, fundamentals, instrumentation, columns: preparation and operation, detection: derivatization. b. HPLC and UPLC: Principles and instrumentation, solvents and columns used, Operational modes, detection and applications. UNIT III Electrophoresis: Principle, Instrumentation, Working conditions, factors affecting separation and applications ofthefollowing:a) Paperelectrophoresisb)Gelelectrophoresisc)Capillary electrophoresis d) Zone electrophores e) Moving boundaryelectrophoresis f)Isoelectricfocus B.X-rayCrystallography: Production of X rays, Different X raymethods, Bragg's law, Rotating crystal technique, X ray powdertechnique, Typesof crystalsandapplications of X-raydiffraction. 12Hours **UNIT IV** A.UV-Visible spectroscopy: Introduction, Theory, Laws, Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and solvent effect; Quantitative estimation of Riboflavin, Paracetamol, Diclofenac, Metronidazole, Aspirin.. Principal Vaagdevi College of Pharmacy 12Hours Hanamkonda, Warangal-506 001 **B.IR spectroscopy:** Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier – Transform IR Spectrometer, Factors affecting vibrational frequencies, Quantitative estimation of APIs using IR spectroscopy. UNIT V 12Hours - **A. Spectro flourimetry**: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer. - B. Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications. #### REFERENCES - 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004. - 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998. - 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers. - 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997. - 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1996. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997. - 7. Pharmaceutical Analysis Modern Methods Part B J W Munson, Vol 11, Marcel. Dekker Series - 8. Spectroscopy of Organic Compounds, 2nd edn., P.S/Kalsi, Wiley estern Ltd., Delhi. - 9. Textbook of Pharmaceutical Analysis, KA. Connors, 3rd Edition, John Wiley & Sons, 1982. # ADVANCED PHARMACEUTICAL ANALYSIS-I (MPA 102T) THEORY 60 Hrs Scope: The principles and procedures for the determination of various pharmaceutical bulk drugs and their formulations belonging to different categories are discussed in detail. The applications of the important reagents like MBTH, FC, PDAB, 2, 3, 5 - triPhenyltetrazolium salt, . 2,6 di -ChloroquinoneChlorimide, N - (1-naphthyl) ethylenediaminedihydrochloride (B.M. Reagent), Carr price reagent etc. in the determination of the pharmaceuticals are also discussed. **Objective:** The quantitative determination of various organic compounds is clearly understood. The spectral analysis, dissolution parameters and microbial assays are also learned. UNIT I 12Hours a. Impurityandstabilitystudies: Definition, classification of impurities in drug Substance or ActivePharmaceutical Ingredients and quantification of impurities as perICHguidelines b.Impuritiesinnewdrugproducts: Rationale for the reporting and control of degradation products, reporting degradation products content of batches, listing of degradation products in specifications, qualification of degradation products. c. Impurities in residual solvents: General principles, classification of residuals olvents, Analytical procedures, limits of residuals olvents, reporting levels of residuals olvents UNIT II 12Hours A. Principles and procedures involved in the determination of the official compounds in IP with the following analytical techniques - A. Non-aqueous - B. Oxidation-reduction - C. Complexometric - D. Diazotization methods - E. Neutralization - F. Acid Base B.A detailed study of the principles and procedures involved in the quantitative determination of the following organic functional groups - A. Amines - B. Esters - C. Carbonyl compounds - D. Hydroxy and carboxyl - E. Amino Acids UNIT III 12Hours Principles and procedures involved in using the following reagents in the determination of pharmaceutical dosage forms official in IP a. MBTH (3-methyl-2-benzothiazolone hydrazone) - b. F.C. Reagent (Folin-Ciocalteu) - c. PDAB (para-Dimethyl Amino Benzaldehyde) - d. 2, 3, 5 triPhenyltetrazolium salt - e. 2,6 di -ChloroquinoneChlorimide - f. N (1-naphthyl) ethylenediaminedihydrochloride (B.M. ## Reagent) g. Carr - Price Reagent h. 2.4 - DNP #### UNIT-IV 12Hours Elemental impurities: Element classification, control of elemental impurities, Potential Sources of elemental Impurities, Identification of Potential Elemental Impurities, analytical procedures, instrumentation & C, H, N and S analysis. UNIT-V 12Hours # a. Biological tests and assays of the following: - a. Adsorbed Tetanus vaccine - b. Adsorbed Diphtheria vaccine - c. Human anti haemophilic vaccine - d. Rabies vaccine - e. Tetanus Anti toxin - f. Tetanus Anti serum - g. Oxytocin - h.Heparin sodium IP - i. Antivenom. -
b. PCR, PCR studies for gene regulation, instrumentation (Principle and Procedures) - c. Microbiological assays and Biological tests: Antimicrobial effectiveness testing, microbial limit tests, sterility test. Antibiotics-microbial assays, bacterial endotoxins test. #### REFERENCES: - 1. Pharmaceutical Chemistry by Becket and Stanlake - 2. Pharmaceutical Analysis by Higuchi, Bechmman and Hassan - 3. Instrumental Methods of Chemical Analysis By B.K. Sharma - 4. A Text Book of Pharmaceutical Analysis by Kennenth A. Conners - 5. Organic spectroscopy by Y.R Sharma Principles of Instrumental Analysis Doglas A Skoog, - F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998. - 6. Instrumental methods of analysis Willards, 7th edition, CBS publishers. - 7. Remington's Pharmaceutical Sciences by Alfonso and Gennaro - 8. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P.D. Sethi - 9.Indian Pharmacopoeia 2010. - 10. Journals (Indian Drugs, IJPS etc # PHARMACEUTICAL VALIDATION (MPA 103T) #### THEORY #### 60Hours **Scope**: The main purpose of the subject is to understand about validation and how it can be applied to industry and thus to improve the quality of the products. The subject covers the complete information about validation, types, methodology and application. Objective: Upon completion of the subject student shall be able to Explain the aspect of validation Carryout validation of manufacturing processes Apply the knowledge of validation to instruments and equipments #### UNIT I #### 12Hours Introduction: Definition of Qualification and Validation, Advantage of Validation, Streamlining of Qualification & Validation process and Validation Master Plan. Validation of Manufacturing Equipment, Qualification of Analytical Instruments and Laboratory equipments. #### UNIT II 12Hours Validation of analytical instruments: Electronic balance, pH meter, UV-Visible spectrophotometer, FTIR, GC, HPLC, HPTLC. Validation of Glassware: Volumetric flask, pipette, Measuring cylinder, beakers and burette. # UNIT III 12Hours Validation of Utility systems: Pharmaceutical water system & pure steam, HVAC system, Compressed air and nitrogen. Cleaning Validation: Cleaning Validation - Cleaning Method development, Validation and validation of analytical method used in cleaning. Cleaning of Equipment. Cleaning of Facilities. Cleaning in place (CIP). #### **UNIT IV** 12Hours Analytical method validation: General principles, Validation of analytical method as per ICH guidelines and USP. Validate the manufacturing facilities #### UNIT V 12Hours - a. General Principles of Intellectual Property: Concepts of Intellectual Property (IP), Intellectual Property Protection (IPP), Intellectual Property Rights (IPR); Economic importance, mechanism for protection of Intellectual Property –patents, Copyright, Trademark; Factors affecting choice of IP protection; Penalties for violation; Role of IP in Pharmaceutical industry; Global ramification and financial implications. - **b. Patent:** Filing a patent applications; patent application forms and guidelines. Types patent applications-provisional and non-provisional, PCT and convention patent applications; International patenting requirement procedures and costs; Rights and responsibilities of a patentee; Practical aspects regarding maintaining of a Patent file; Patent infringement meaning and scope. - c. Significance of transfer technology (TOT), IP and ethics-positive and negative aspects of IPP; Societal responsibility, avoiding unethical practices. 193 #### **REFERENCES:** - 1. T. Loftus & R. A. Nash, "Pharmaceutical Process Validation", Drugs and Pharm Sci. Series, Vol. 129, 3rd Ed., Marcel Dekker Inc., N.Y. - 2. The Theory & Practice of Industrial Pharmacy, 3rd edition, Leon Lachman, Herbert A. Lieberman, Joseph. - L. Karig, Varghese Publishing House, Bombay. - 3. Validation Master plan by Terveeks or Deeks, Davis Harwood International publishing. - 4. Validation of Aseptic Pharmaceutical Processes, 2nd Edition, by Carleton & Agalloco, (Marcel Dekker). - 5. Pharmaceutical Facilities: Design, Layouts and Validation, Potdar, Pharmamed Press - 6. Michael Levin, Pharmaceutical Process Scale-Upl, Drugs and Pharm. Sci. Series, Vol. 157, 2nd Ed., Marcel Dekker Inc., N.Y. - 7. Validation Standard Operating Procedures: A Step by Step Guide for Achieving Compliance in the Pharmaceutical, Medical Device, and Biotech Industries, Syed Imtiaz Haider - 8. Pharmaceutical Equipment Validation: The Ultimate Qualification Handbook, Phillip A. Cloud, Interpharm Press - 9. Validation of Pharmaceutical Processes: Sterile Products, Frederick J.Carlton (Ed.) and James Agalloco (Ed.), Marcel Dekker, 2nd Ed. - 10. Analytical Method validation and Instrument Performance Verification by Churg Chan, Heiman Lam # FOODANALYSIS (MPA104T) 60Hrs # Scope This courseis designed to impart knowledgeon analysis of food constituents and finished food products. The course includes application of instrumental analysis in the determination of pesticides invariety of food products. # **Objectives** Atcompletionofthiscoursestudentshallbe able tounderstand various analytical techniques in the determination of - Foodconstituents - Foodadditives - Finishedfoodproducts - Pesticidesinfood - And also students hall have the knowledge on food regulations and legislations # UNIT-I 12Hours Carbohydrates: classification and properties of food carbohydrates, General methods of analysis of food carbohydrates, Changes in food processing, Digestion, absorption and metabolism of carbohydrates, Dietary fibre, Crude fibre and application of food carbohydrates Proteins: Chemistryandclassification of aminoacids and proteins, Physico-Chemical properties of protein and their structure, general methods of analysis of proteins and aminoacids, Digestion, absorption and metabolism of proteins UNIT-II 12Hours **Lipids:** Classification, general methods of analysis, refining of fats and oils; hydrogens of vegetables oils, determinations of adulteration in fats and oils, various methods used for measurements of spoilage of fats and fatty foods. Vitamins: Classification of vitamins methods of analysis of vitamins, principle of microbial assay of vitamins of B -series UNIT-III 12Hours Food additives: Introduction, analysis of preservatives, antioxidants, artificial sweeteners, flavors, flavor, enhancers, stabilizers, thickening and jelling agents. Pigments and synthetic dyes: Natural pigments, their occurrences and characteristics properties, permitted synthetics dyes, Non permitted synthetics dyes used by industries, Method of detection of natural, permitted and Non permitted dyes. UNIT-IV 12Hours General Analytical methodsfor milk, milk constituents and milkproducts like ice cream, milk powder, butter, margarine, cheese including adulterants and contaminants of milk Analysis of fermentation products like wine, spirits, beer and vinegar UNIT-V 12Hours Pesticide analysis: Effects of pest and insects on various food, use of pesticides pesticides pesticides pesticides pesticides pesticides pesticides pesticides analysis, determination of pesticide residues in grain, fruits, vegetables, milkandmilk products. Legislation regulations of food products with special emphasis on BIS, Agmark, FDA and US-FDA. #### REFERENCES 1. Thechemical analysis of foods—David Pearson, Seventhedition, Churchill Livingstone, Edinburgh London, 1976 2. IntroductiontotheChemicalanalysisoffoods-S.Nielsen,Jones&Bartlettpublishers,BostonLondon,1994. Principal Yaagdevi College of Pharmacy Hanamkonda, Warangal-506 001 199 - OfficialmethodsofanalysisofAOACInternational,sixthedition,VolumeI &II,1997. AnalysisofFoodconstituents-Multon,WileyVCH. Dr.WilliamHorwitz,OfficialmethodsofanalysisofAOACInternational,18thedition,2005. # MODERN PARMACEUTICAL ANALYTICAL TECHNIQUES LAB (MPA 105P) #### LIST OF EXPERMINTS - 1. Calibration of glassware - 2. Calibration of pH meter - 3. Identification of Amino acids by Paper Chromatography - 4. Identification of Amino acids by Thin Layer Chromatography - 5. Identification of Alkaloids by Thin Layer Chromatography - 6. Calibration of UV- Visible spectrophotometer - 7. Calibration of HPLC instrument - 8. Determine the λ max of KMNO₄ - 9. Assay of Ibuprofen by using U.V spectrophotometer - 10. Assay of Paracetamol by using U.V spectrophotometer - 11. Assay of Metronidazole by using U.V spectrophotometer - 12. Assay of Aspirin by using U.V spectrophotometer - 13. Assay of Aceclofenac by using U.V spectrophotometer - 14. Assay of Nimesulide by using U.V spectrophotometer - 15. Calibration of Ondansetron by using U.V spectrophotometer - 16. Assay of caffeine by using HPLC - 17. Assay of Nimesulide by using HPLC - 18. Determination of Viscosity of Different Polymeric Solution By Brook Field Viscometer - 19. Effect of Concentration on Viscosity of Glycerin Solution By Brook Field Viscometer # ADVANCED PHARMACEUTICAL ANALYSIS-I LAB (MPA 106P) LIST OF EXPERIMENTS: - 1. Determination of Acid value - 2. Determination of Fatty acid - 3. Determination of Saponification value - 4. Determination of Ester value - 5. Determination of Peroxide value - 6. Determination of Acetyl value - 7. Determination of Iodine value - 8. Determination of Hydroxyl value - 9. Assay of ascorbic acid - 10. Assay of Atropine sulphate - 11. Assay of Ammonium chloride - 12. Assay of Magnesium carbonate - 13. Assay of Mohr's salt - 14. Spectrophotometric determination of Nimesulide by colorimetry - 15. Colorimetric estimation of Metronidazole by vanillin - 16. Colorimetric estimation of Metronidazole by PDAB - 17. Estimation of Creatinine in urine by alkaline pictrate (jaffe's method) - 18. Assay of Aceclofenac by FC reagent - 19. Determination of Quinine sulphate by fluorimetry - 20. Determination of amount of amine salts by titration in aqueous solutions - 21. Assay of Ascorbic acid by UV spectrophotometer - 22. Assay of Riboflavin by UV spectrophotometer - 23.
Determination of sulphates by nephlometry - 24. Potentiometric titration of strong acid and strong base - 25. Potentiometric titration of weak acid and strong base - 26. Conductometric titration of strong acid and strong base ## SEMESTER-II ADVANCED INSTRUMENTAL ANALYSIS (MPA 201T) THEORY 60 Hours **Scope**: This subject deals with various hyphenated analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are, X-ray crystallography, super critical chromatography and hyphenated techniques. **Objective**: By the completion of topics the students will come out with the thorough knowledge of various spectral aspects of X-Ray, IR, SEM, ORD etc which help them in further projects works and also industrial opportunities. Unit I: 10 Hours - a. UV Spectroscopy: Woodward-Fieser rules; Applications of UV-Visible spectroscopy in structural elucidation; Study of keto-enol tautomerism; Solving problems. (3-4 Hours) - **b. IR spectroscopy:** Theory and instrumentation in brief. Molecular vibrations; Factors influencing vibrational frequencies; Sampling techniques; Finger print region; Study of Keto-enol tautomerism; intra & inter-molecular hydrogen bonding; Studying progress in Chemical reactions; geometric and rational isomerism; Conformational analysis; spectral features of Classes of compounds indicated above. Solving problems. **(6-7 Hours)** Unit II: Mass spectrometry: 12 Hours Theory and instrumentation. Ionization techniques-EI, CI, ESI, FAB, MALDI etc. High resolution MS; Molecular ions; important features of molecular ion peak; Determination of molecular formula; Mc Lafferty rearrangement; Metastable ions or peaks; Isotope peaks, The nitrogen rule; general fragmentation modes; Fragmentation in the classes of compounds indicated above. Problems and their solution. Unit III: ¹H NMR 10 Hour Theory and instrumentation in brief. Solvents; Number of signals chemical equivalence, stereochemical equivalence in predicting the number of signals. intensity of signals; Chemical shift; factors influencing chemical shift; Spin-Spin Coupling; Coupling Constants; long-range coupling; Shielding and deshielding; Magnetic anisotropy; Protons on oxygen and nitrogen; Proton exchange; NMR spectra of the classes of compounds indicated above. Problems and their solution. UNIT IV 12 Hours - a. Biochromatography: Size exclusion chromatography, ion exchange chromatography, ion pair chromatography, affinity chromatography general principles, stationary phases and mobile phases. - b. Super critical fluid chromatography: Principles, instrumentation, pharmaceutical applications. - c. Scanning electron microscope (SEM): Principles, Instrumentation and applications. Optical Rotatory Dispersion (ORD), Circular Dichroism, Cotton effect, Octane rule and applications. UNIT V 10Hours - **a.** DSC: Principle, thermal transitions, instrumentation (Heat flux and power-compensation designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and cooling rates, resolution, Sources of errors) and their influence, advantages and disadvantages, pharmaceutical applications. - **b. DTA:** Principle, instrumentation, advantage and disadvantage, pharmaceutical application, derivative differential thermal analysis (DDTA). - **c. TGA:** Principle, instrumentation, factors affecting results, advantages and disadvantages, pharmaceutical application. #### **REFERENCES:** - 1. Instrumental Methods of Chemical Analysis by B.K Sharma - 2. A Text book of Pharmaceutical Analysis by Kerrenth A. Connors - 3. Vogel's Text book of Quantitative Chemical Analysis by A.I. Vogel - 4. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake - 5. Organic Chemistry by I. L. Finar - 6. Quantitative Analysis of Drugs by D. C. Garrett - 7. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi # **MODERN BIO-ANALYTICAL TECHNIQUES (MPA 202T)** THEORY 60 Hrs **Scope**: This subject is designed to provide detailed knowledge about the importance of analysis of drugs in biological matrices. Objective: Upon completion of the course, the student shall be able to understand Extraction of drugs from biological samples Separation of drugs from biological samples using different techniques Guidelines for BA/BE studies UNIT I 12 Hours Extraction of drugs and metabolites from biological matrices: General need, principle and procedure involved in the Bioanalytical methods such as Protein precipitation, Liquid -Liquid extraction and Solid phase extraction and other novel sample preparation approach. UNIT II 12 Hours **Biopharmaceutical Consideration:** Introduction, Biopharmaceutical Factors Affecting Drug Bioavailability, In Vitro: Dissolution and Drug Release Testing, Alternative Methods of Dissolution Testing Transport models, Biopharmaceutics Classification System. Solubility: Experimental methods. Permeability: In-vitro, in-situ and In-vivo methods. UNIT III 12 Hours #### Bioanalysis and bioanalytical method validation: - a. Types of body fluids, requirement of analysis, matrix effects, non-biological analytical samples. - b. Bioanalytical method validation: USFDA and EMEA guidelines. Acceptance criteria in comparison to non-biological samples. # UNIT IV Cell culture techniques 12 Hours - a. Basic equipments used in cell culture lab. Cell culture media, various types of cell culture, general procedure for cell cultures; isolation of cells, subculture, cryopreservation, characterization of cells and their applications. - b.Principles and applications of cell viability assays (MTT assays) c. Principles and applications of flow cytometry. UNIT V 12 Hours Drug Product Performance, In Vivo: Bioavailability and Bioequivalence: Drug Product Performance, Purpose of Bioavailability Studies, Relative and Absolute Availability. Methods for Assessing Bioavailability, Bioequivalence Studies, Design and Evaluation of Bioequivalence Studies, Study Designs, Crossover Study Designs, Generic Biologics (Biosimilar Drug Products), Clinical Significance of Bioequivalence Studies. 201 #### REFERENCES: - 1. Analysis of drugs in Biological fluids Joseph Chamberlain, 2nd Edition.CRC Press, New York, 1995. - 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998. - 3. Pharmaceutical Analysis Higuchi, Brochmman and Hassen, 2nd Edition, Wiley Interscience Publications, 1961 - 4. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11, Marcel Dekker Series - 5. Practical HPLC method Development Snyder, Kirkland, Glaich, 2nd Edition, John Wiley & Sons, New Jercy. USA. - 6. Chromatographic Analysis of Pharmaceuticals John A Adamovics, 2nd Edition, Marcel Dekker, New York, USA. 1997. - 7. Chromatographic methods in clinical chemistry & Toxicology Roger L Bertholf, Ruth E Winecker, John Wiley & Sons, New Jersey, USA. 2007. - 8. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol.69, Marcel Dekker Series, 1995. - 9. Good laboratory Practice Regulations Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989. - 10. ICH, USFDA & CDSCO Guidelines #### QUALITY CONTROL AND QUALITY ASSURANCE (MPA 203T) THEORY 60 Hrs Scope: This course deals with the various aspects of quality control and quality assurance aspects of pharmaceutical industries. It covers the important aspects like cGMP, QC tests, documentation, quality certifications, GLP and regulatory affairs. **Objective:** The study of this subject builds the confidence in the minds on the students to develop and formulate high quality pharmaceutical products. Unit I 12 Hours Concept of quality assurance, total quality management, philosophy of GMP, cGMP and GLP, organization and functioning of accreditation bodies: ISO 9000, ISO 14000, NABL and OSHA 18000 Unit II 12 Hours a. Organization and personal, responsibilities, training hygiene b. Premises: Location, design, plan layout, construction, maintenance and sanitations, environmental control, sterile area, control of contamination c. Equipments: selection, purchase, specifications, maintenance, clean in place, sterilized in place - Raw - materials; purchase specifications, maintenance of stores, selection of vendors, controls and raw materials Unit III 12 Hours Manufacture and controls on dosage forms a. Manufacturing documents, master formula records, batch formula records, standard operating procedures, Quality audits of manufacturing processes and facilities b. In process quality control on various dosage forms sterile, biological products and non-sterile, standard operating procedures for various operations like cleaning, filling, drying, compression, coating, disinfection, sterilization, membrane filtration etc. c. Guideline for Quality Assurance of Human Blood Products and large volume parenterals. Unit-IV 12 Hours a. Packaging and labeling controls, line clearance and other packaging materials. b. Quality Control Laboratory: Responsibilities, good laboratory practices, routine controls, instruments, protocols, non-clinical testing, controls on animal house, data generation and storage, quality control documents, retention samples, records, audits of quality control facilities – finished products release: quality review, quality audits and batch release document. Unit V 12 Hours a. Distribution and Distribution records: Handling of returned goods recovered materials and reprocessing. b. Complaints and recalls, evaluation of complaints recall procedures, related records and documents. #### REFERENCES: - 1. The International Pharmacopoeia Vol 1,2,3,4, 3rd edition: General methods of analysis quality specifications for Pharmaceutical substances, Excipients, dosage forms. - 2. Quality Assurance of Pharmaceuticals. A compendium of guidelines and related material Vol.1 and Vol.2, WHO (1999) - 3. GMP- Mehra - 4. Pharmaceutical Process Validation Berry and Nash - 5.
Basic test for Pharmaceutical substances-WHO(1988) - 6. Basic test for Pharmaceutical substances-WHO(1991) - 7. How to practice GMP's-P P SharmaVandanaPublications, Agra, 1991. - 8. The drugs and cosmetics Act-1940-Deshpande, NileshGandhi, 4th edition, SusmitPublishers, 2006. - 9. OA Manual by D.H. Shah, 1stedition, Business Horizons, 2000. - 10. SOP guidelines by DH Shah - 11. Quality Assurance guide-OPP - 12. Quality AssuranceGuide by organization of PharmaceuticalProcedures ofIndia,3rdrevisededition,VolumeI&II,Mumbai,1996. - 13. GoodLaboratoryPracticeRegulations,2nd Edition,SandyWeinbergVol.69,MarcelDekkerSeries,1995. - 14. QualityAssuranceofPharmaceuticals-AcompediumofGuidelinesand Relatedmaterials Voll&II,2ndedition,WHOPublications,1999. - 15. TheInternationalPharmacopoeia-volI,II,III,IV&V-GeneralMethodsofAnalysisandQualityspecificationforPharmaceuticalSubstances,ExcepientsandDosageforms,3rd edition,WHO,Geneva,2005. - 16. GoodlaboratoryPracticeRegulations-AllenF.Hirsch,Volume38,MarcelDekkerSeries,1989. - 17. ICHguidelines - 18. ISO9000andtotalqualitymanagement - 19. Good Manufacturing Practices for Pharmaceuticals a plan for total quality control Sidney H. Willig, Vol. 52, 3rdedition, Marcel Dekker Series. - 20. Steinborn L. GMP/ISO Quality Audit Manual for Healthcare Manufacturers and Their Suppliers, Sixth Edition, (Volume 1 With Checklists and Software Package). Taylor & Francis; 2003. - 21. SarkerDK.QualitySystemsandControlsforPharmaceuticals.JohnWiley &Sons;2008 # ADVANCED PHARMACEUTICAL ANALYSIS - II (MPA 204T) Scope: The principles and procedures for the determination of various pharmaceutical bulk drugs and their formulations belonging to different categories are discussed in detail. The applications of the important reagents like GLC, GC-MS, HPLC, HPTLC, UV/Vis, LC-MS, MS-MS etc. in the determination of the pharmaceuticals are also discussed. **Objective:** The qualitative and quantitative determination of various organic compounds is clearly understood. The chromatographic techniques, elemental analysis, evaluation of cosmetic products are also learned. Unit I 12 Hours An advanced study of the principles and procedures and applications of instrumental methods in the development of medicines (GLC, GC-MS, HPLC, HPTLC, UV/Vis, LC-MS, MS-MS) Unit II 12 Hours a. Elemental analysis such as determination of sodium, potassium, calcium, phosphorous, sulphur, chlorine, bromine and Iodine. B. Optical rotator dispersion technique for the analysis of chiral compounds Unit III 12 Hours An advanced study of the principles and procedures involved in the instrumental methods and applications of Flame Photometry, Fluorimetry, Nephelo - Turbidimetry and Refractrometry, Study of general principles and methods for the determination of Proteins, Carbohydrates, Fats, Crude fibre, Moisture and Nitrogen Unit IV 12 Hours a. Evaluation of cosmetic products: Determination of Ash, volatile matter, heavy metals, fineness of Powder, density, viscosity of cosmetic raw materials and finished products. Study of quality of raw materials and general methods of analysis of raw material used in cosmetic manufacture as per BIS. b. Standard specification laid down for sampling and testing of various cosmetics in finished forms such as baby care products, skin care products, dental products, personal hygiene preparations, lips sticks. Hair products and skin creams by the Bureau of Indian Standards. Unit V 12 Hours a.Identification and quantitative determination of preservatives, Antioxidants, Colouring materials, Emulsifiers and Stabilizers in Pharmaceutical formulation b.Methodology involved Moisture content determination in dosage forms Alcohol determination Essential oil determination Surfactant analysis #### REFERENCES: - 1. Remington's Pharmaceutical Sciences Alfonso and Gennaro - 2. Pharmaceutical Chemistry Becket and Stanlake - 3. Quantitative Analysis of Drugs in Pharmaceutical Formulations P.D. Sethi - 4. Pharmaceutical Analysis Higuchi, Bechmman and Hassan - 5. Theory and Practice of Industrial Pharmacy Liebermann and Lachmann - 6. Indian Pharmacopoeia 1996 - 7. Instrumental Methods of Chemical Analysis B.K. Sharma - 8. A Text Book of Pharmaceutical Kenneth A. Conner - 9. Thechemical analysis of foods—David Pearson, Seventhedition, Churchill Livingstone, Edinburgh London, 1976 - 10. IntroductiontotheChemicalanalysisoffoods-S.Nielsen,Jones&Bartlettpublishers,BostonLondon,1994. - 11. OfficialmethodsofanalysisofAOACInternational, sixthedition, Volume I & II, 1997. - 12. AnalysisofFoodconstituents-Multon, WileyVCH. - 13. .Dr. William Horwitz, Official methods of analysis of AOAC International, 18 the dition, 2005. #### ADVANCED INSTRUMENTAL ANALYSIS (MPA 205P) - 1. Preparation and In-process quality control test for Immediate released tablets - 2. System suitability parameters for HPLC - 3. Analytical method development for given drug by using HPLC - 4. Determination of linearity and range by using HPLC - 5. Determination of accuracy and precision by using HPLC - 6. Determination of specificity by using HPLC - 7. Determination of robustness by using HPLC - 8. Determination of ruggedness by using HPLC - 9. Determination of Limit of Detection and Limit of Quantitation by using HPLC - 10. Analytical method development for Ibuprofen by using U.V spectroscopy - 11. Determination of linearity and range by using U.V spectroscopy - 12. Determination of accuracy and precision by using U.V spectroscopy - 13. Determination of specificity by using U.V spectroscopy - 14. Determination of robustness by using U.V spectroscopy - 15. Determination of ruggedness by using U.V spectroscopy - 16. Determination of Limit of Detection and Limit of Quantitation by using U.V spectroscopy - 17. Assay of ibuprofen by using U.V spectroscopy - 18. Standard addition method in support of determination of accuracy of the method by using U.V spectroscopy - 19. Stability testing of drug substances as per ICH - 20. Short term stability studies at different pH - 21. pH dependent saturation solubility testing of given API - 22. Determination of drug release kinetics of given CR/ER/SR tablets by dissolution testing method - 23. Optimization of solvent system for immiscible liquids by ternary phase diagram # ADVANCED PHARMACEUTICAL ANALYSIS-II PRACTICALS (MPA 206P) - 1. Determination of the percentage of sodium chloride by Mohr's method - 2. Determination of the percentage of sodium chloride by Volhard's method - 3. Estimation of Sulphate ions by Nephelometry - 4. Determination of Linearity and Range of an analytical method to determine the content of sulphate ions by Nephelometry - 5. Determination of Accuracy and Precision of an analytical method to determine the content of sulphate ions by Nephelometry - 6. Determination of LOD(Limit of Detection) and LOQ(Limit of Quantitation) of an analytical method to determine the content of sulphate ions by Nephelometry - 7. Determination of amount of amines present in Hydroxylamine Hcl - 8. Estimation of Sodium ions by Flame photometry - 9. Determination of unknown concentration of Quinine sulphate Fluorometry - 10. Determination of Quenching effect of Quinine sulphate by Potassium iodide solution in Fluorometry - 11. Estimation of unknown concentration of Glycerin by Abbe's Refractometry - 12. Estimation of unknown concentration of Tartaric acid by Polarimetry - 13. Assay of Diclofenac sodium and Paracetamol by SEM(Simultaneous Equation Method) by using U.V spectrophotometer - 14. Assay of Ibuprofen and Paracetamol by SEM (Simultaneous Equation Method) by using U.V spectrophotometer - 15. Assay of Diclofenac sodium by using U.V spectrophotometer # SemesterIII MRM301T-ResearchMethodology&Biostatistics (Commontoallspecializations) #### UNIT-I General Research Methodology: Research, objective, requirements, practical difficulties, reviewofliterature, study design, types of studies, strategies to eliminate errors/bias, controls, randomization, crossover design, placebo, blinding techniques. 10 Hrs #### UNIT-II Biostatistics: Definition, application, sample size, importance of sample size, factors influencing sample size, dropouts, statistical tests of significance, type of significance tests, parametric tests (students "t" test, ANOVA, Correlation coefficient, regression), non-parametric tests (wilcoxan rank tests, analysis of variance, correlation, chisquare test), null hypothesis, P values, degree of freedom, interpretation of P values. #### UNIT-III Medical Research: History, values in medical ethics, autonomy, beneficence, non-maleficence, doubleeffect, conflicts between autonomy and beneficence/non-maleficence, euthanasia, informed consent, confidentiality, criticisms of orthodox medical ethics, importance of communication, control resolution, guidelines, ethics committees, cultural concerns, truth telling, on line business practices, conflicts of interest, referral, vendor relationships, treatment of family members, sexual relationships, fatality. #### UNIT-IV CPCSEAguidelinesforlaboratoryanimalfacility:Goals,veterinarycare,quarantine,surveillance, diagnosis, treatment and control of disease, personal hygiene, location of animalfacilitiestolaboratories,anesthesia,euthanasia,physicalfacilities,environment,animalhusban dry,recordkeeping,SOPs,personneland training,transportoflabanimals.10 hrs # UNIT-V Declaration of Helsinki: History, introduction, basic principles for all medical research, and additional principles for medical research combined with medical care. 10hrs #### **Reference Books** - 1. PhilipKotlerandKevinLaneKeller:MarketingManagement,PrenticeHallofIndia,NewDelhi. - 2. ArunKumar, Meenakshi: Marketing Management, Vikas Publishing, india